473 research outputs found

    Bose-Einstein Condensation of 88^{88}Sr Through Sympathetic Cooling with 87^{87}Sr

    Get PDF
    We report Bose-Einstein condensation of 88^{88}Sr, which has a small, negative s-wave scattering length (a88=2a_{88}=-2\,a0a_0). We overcome the poor evaporative cooling characteristics of this isotope by sympathetic cooling with 87^{87}Sr atoms. 87^{87}Sr is effective in this role in spite of the fact that it is a fermion because of the large ground state degeneracy arising from a nuclear spin of I=9/2I=9/2, which reduces the impact of Pauli blocking of collisions. We observe a limited number of atoms in the condensate (Nmax104N_{max}\approx 10^4) that is consistent with the value of a88a_{88} and the optical dipole trap parameters.Comment: 4 pages, 4 figure

    Runaway evaporation for optically dressed atoms

    Get PDF
    Forced evaporative cooling in a far-off-resonance optical dipole trap is proved to be an efficient method to produce fermionic- or bosonic-degenerated gases. However in most of the experiences, the reduction of the potential height occurs with a diminution of the collision elastic rate. Taking advantage of a long-living excited state, like in two-electron atoms, I propose a new scheme, based on an optical knife, where the forced evaporation can be driven independently of the trap confinement. In this context, the runaway regime might be achieved leading to a substantial improvement of the cooling efficiency. The comparison with the different methods for forced evaporation is discussed in the presence or not of three-body recombination losses

    Photoassociative spectroscopy at long range in ultracold strontium

    Get PDF
    We report photoassociative spectroscopy of 88^{88}Sr2_2 in a magneto-optical trap operating on the 1S03P1{^1S_0}\to{^3P_1} intercombination line at 689 nm. Photoassociative transitions are driven with a laser red-detuned by 600-2400 MHz from the 1S01P1{^1S_0}\to{^1P_1} atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the 1P1{^1P_1} atomic lifetime (τ=5.22±0.03\tau=5.22 \pm 0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.Comment: 4 pages, 4 figures, submitte

    Degenerate Fermi Gas of 87^{87}Sr

    Get PDF
    We report quantum degeneracy in a gas of ultra-cold fermionic 87^{87}Sr atoms. By evaporatively cooling a mixture of spin states in an optical dipole trap for 10.5\,s, we obtain samples well into the degenerate regime with T/TF=0.26.06+.05T/T_F=0.26^{+.05}_{-.06}. The main signature of degeneracy is a change in the momentum distribution as measured by time-of-flight imaging, and we also observe a decrease in evaporation efficiency below T/TF0.5T/T_F \sim 0.5.Comment: 4 pages, 3 figure

    Inelastic and elastic collision rates for triplet states of ultracold strontium

    Get PDF
    We report measurement of the inelastic and elastic collision rates for ^{88}Sr atoms in the (5s5p)^3P_0 state in a crossed-beam optical dipole trap. This is the first measurement of ultracold collision properties of a ^3P_0 level in an alkaline-earth atom or atom with similar electronic structure. Since the (5s5p)^3P_0 state is the lowest level of the triplet manifold, large loss rates indicate the importance of principle-quantum-number-changing collisions at short range. We also provide an estimate of the collisional loss rates for the (5s5p){^3P_2} state.Comment: 4 pages 5 figure

    Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2 - (5s4d)3D2 transition

    Full text link
    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p)3P2 - (5s4d)3D2 transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p)3P2 dark state are repumped back into the (5s2)1S0 ground state. Spectroscopy of 84Sr, 86Sr, 87Sr, and 88Sr improves the value of the (5s5p)3P2 - (5s4d)3D2 transition frequency for 88Sr and determines the isotope shifts for the transition.Comment: 4 pages, 5 figure

    Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr

    Get PDF
    We report the use of photoassociative spectroscopy to determine the ground state s-wave scattering lengths for the main bosonic isotopes of strontium, 86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of -1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Using Absorption Imaging to Study Ion Dynamics in an Ultracold Neutral Plasma

    Full text link
    We report optical absorption imaging of ultracold neutral plasmas.Images are used to measure the ion absorption spectrum, which is Doppler-broadened. Through the spectral width, we monitor ion equilibration in the first 250ns after plasma formation. The equilibration leaves ions on the border between the weakly coupled gaseous and strongly coupled liquid states. On a longer timescale of microseconds, we observe radial acceleration of ions resulting from pressure exerted by the trapped electron gas.Comment: 4 pages, 4 figure

    Phenological Mismatch Between Season Advancement and Migration Timing Alters Arctic Plant Traits

    Get PDF
    Climate change is creating phenological mismatches between herbivores and their plant resources throughout the Arctic. While advancing growing seasons and changing arrival times of migratory herbivores can have consequences for herbivores and forage quality, developing mismatches could also influence other traits of plants, such as above‐ and below‐ground biomass and the type of reproduction, that are often not investigated. In coastal western Alaska, we conducted a 3‐year factorial experiment that simulated scenarios of phenological mismatch by manipulating the start of the growing season (3 weeks early and ambient) and grazing times (3 weeks early, typical, 3 weeks late, or no‐grazing) of Pacific black brant (Branta bernicla nigricans), to examine how the timing of these events influence a primary goose forage species, Carex subspathacea. After 3 years, an advanced growing season compared to a typical growing season increased stem heights, standing dead biomass, and the number of inflorescences. Early season grazing compared to typical season grazing reduced above‐ and below‐ground biomass, stem height, and the number of tillers; while late season grazing increased the number of inflorescences and standing dead biomass. Therefore, an advanced growing season and late grazing had similar directional effects on most plant traits, but a 3‐week delay in grazing had an impact on traits 3–5 times greater than a similarly timed shift in the advancement of spring. In addition, changes in response to treatments for some variables, such as the number of inflorescences, were not measurable until the second year of the experiment, while other variables, such as root productivity and number of tillers, changed the direction of their responses to treatments over time. Synthesis. Factors affecting the timing of migration have a larger influence than earlier springs on an important forage species in the breeding and rearing habitats of Pacific black brant. The phenological mismatch prediction for this site of earlier springs and later goose arrival will likely increase above‐ and below‐ground biomass and sexual reproduction of the often‐clonally reproducing C. subspathacea. Finally, the implications of mismatch may be difficult to predict because some variables required successive years of mismatch to respond

    Two-photon photoassociative spectroscopy of ultracold 88-Sr

    Get PDF
    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the X1Σg+^1\Sigma_g^+ state of the 88^{88}Sr2_2 dimer. Measurement of the binding energy allows us to determine the s-wave scattering length, a88=1.4(6)a0a_{88}=-1.4(6) a_0. For the intermediate state, we use a bound level on the metastable 1S0^1S_0-3P1^3P_1 potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.Comment: 9 pages, 9 figure
    corecore