21,411 research outputs found
Low energy electron scattering from DNA and RNA bases: shape resonances and radiation damage
Calculations are carried out to determine elastic scattering cross sections
and resonance energies for low energy electron impact on uracil and on each of
the DNA bases (thymine, cytosine, adenine, guanine), for isolated molecules in
their equilibrium geometry. Our calculations are compared with available theory
and experiment. We also attempt to correlate this information with experimental
dissociation patterns through an analysis of the temporary anion structures
that are formed by electron capture in shape resonances.Comment: 20 pages, 12 figures, submitted to J. Chem. Phy
On the Theory of Fermionic Preheating
In inflationary cosmology, the particles constituting the Universe are
created after inflation due to their interaction with moving inflaton field(s)
in the process of preheating. In the fermionic sector, the leading channel is
out-of equilibrium particle production in the non-perturbative regime of
parametric excitation, which respects Pauli blocking but differs significantly
from the perturbative expectation. We develop theory of fermionic preheating
coupling to the inflaton, without and with expansion of the universe, for light
and massive fermions, to calculate analytically the occupation number of
created fermions, focusing on their spectra and time evolution. In the case of
large resonant parameter we extend for rermions the method of successive
parabolic scattering, earlier developed for bosonic preheating. In an expanding
universe parametric excitation of fermions is stochastic. Created fermions very
quickly, within tens of inflaton oscillations, fill up a sphere of radius
in monetum space. We extend our formalism to the production of
superheavy fermions and to `instant' fermion creation.Comment: 14 pages, latex, 12 figures, submitted for publicatio
Extracting New Physics from the CMB
We review how initial state effects generically yield an oscillatory
component in the primordial power spectrum of inflationary density
perturbations. These oscillatory corrections parametrize unknown new physics at
a scale and are potentially observable if the ratio is
sufficiently large. We clarify to what extent present and future CMB data
analysis can distinguish between the different proposals for initial state
corrections.Comment: Invited talk by B. Greene at the XXII Texas Symposium on Relativistic
Astrophysics, Stanford University, 13-17 December 2004, (TSRA04-0001), 8
pages, LaTeX, some references added, added paragraph at the end of section 2
and an extra note added after the conclusions regarding modifications to the
large k power spectra deduced from galaxy survey
Line Structure in the Spectrum of FU Orionis
New high-resolution spectra of FU Ori, obtained with the HIRES spectrograph
at the Keck I telescope in 2003-2006, make it possible to compare the optical
line profiles with those predicted by the self-luminous accretion disk model. A
dependence of line width on excitation potential and on wavelength, expected
for a Keplerian disk, is definitely not present in the optical region, nor is
the line duplicity due to velocity splitting. The absorption lines observed in
the optical region of FU Ori must originate in or near the central object, and
here their profiles are shown to be those expected of a rigidly rotating
object. They can be fitted by a rapidly rotating (v sin i = 70 km/s)
high-luminosity G-type star having a large dark polar spot, with axis inclined
toward the line of sight. Over these years, the radial velocity of FU Ori has
remained constant to within +/-0.3 km/s, so there is no indication that the
star is a spectroscopic binary. These results apply to the optical region
( \AA); more distant, cooler regions of the disk contribute in
the infrared.Comment: 14 pages, 11 figures, accepted by A
On the resistivity at low temperatures in electron-doped cuprate superconductors
We measured the magnetoresistance as a function of temperature down to 20mK
and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with
controlled oxygen content. This allows us to access the edge of the
superconducting dome on the underdoped side. The sheet resistance increases
with increasing oxygen content whereas the superconducting transition
temperature is steadily decreasing down to zero. Upon applying various magnetic
fields to suppress superconductivity we found that the sheet resistance
increases when the temperature is lowered. It saturates at very low
temperatures. These results, along with the magnetoresistance, cannot be
described in the context of zero temperature two dimensional
superconductor-to-insulator transition nor as a simple Kondo effect due to
scattering off spins in the copper-oxide planes. We conjecture that due to the
proximity to an antiferromagnetic phase magnetic droplets are induced. This
results in negative magnetoresistance and in an upturn in the resistivity.Comment: Accepted in Phys. Rev.
The Development of Equilibrium After Preheating
We present a fully nonlinear study of the development of equilibrium after
preheating. Preheating is the exponentially rapid transfer of energy from the
nearly homogeneous inflaton field to fluctuations of other fields and/or the
inflaton itself. This rapid transfer leaves these fields in a highly nonthermal
state with energy concentrated in infrared modes. We have performed lattice
simulations of the evolution of interacting scalar fields during and after
preheating for a variety of inflationary models. We have formulated a set of
generic rules that govern the thermalization process in all of these models.
Notably, we see that once one of the fields is amplified through parametric
resonance or other mechanisms it rapidly excites other coupled fields to
exponentially large occupation numbers. These fields quickly acquire nearly
thermal spectra in the infrared, which gradually propagates into higher
momenta. Prior to the formation of total equilibrium, the excited fields group
into subsets with almost identical characteristics (e.g. group effective
temperature). The way fields form into these groups and the properties of the
groups depend on the couplings between them. We also studied the onset of chaos
after preheating by calculating the Lyapunov exponent of the scalar fields.Comment: 15 pages, 23 figure
Measurements of the absolute value of the penetration depth in high- superconductors using a tunnel diode resonator
A method is presented to measure the absolute value of the London penetration
depth, , from the frequency shift of a resonator. The technique
involves coating a high- superconductor (HTSC) with film of low - Tc
material of known thickness and penetration depth. The method is applied to
measure London penetration depth in YBa2Cu3O{7-\delta} (YBCO)
Bi2Sr2CaCu2O{8+\delta} (BSCCO) and Pr{1.85}Ce{0.15}CuO{4-\delta}\lambda (0)\lambda \approx 2790$ \AA, reported for the first
time.Comment: RevTex 4 (beta 4). 4 pages, 4 EPS figures. Submitted to Appl. Phys.
Let
- âŠ