220 research outputs found
Genomics of Divergence along a Continuum of Parapatric Population Differentiation
MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1)
On the nature of the extragalactic number counts in the K-band
We investigate the causes of the different shape of the -band number
counts when compared to other bands, analyzing in detail the presence of a
change in the slope around . We present a near-infrared imaging
survey, conducted at the 3.5m telescope of the Calar Alto Spanish-German
Astronomical Center (CAHA), covering two separated fields centered on the HFDN
and the Groth field, with a total combined area of deg to a
depth of (,Vega). We derive luminosity functions from the
observed -band in the redshift range [0.25-1.25], that are combined with
data from the references in multiple bands and redshifts, to build up the
-band number count distribution. We find that the overall shape of the
number counts can be grouped into three regimes: the classic Euclidean slope
regime () at bright magnitudes; a transition regime at
intermediate magnitudes, dominated by galaxies at the redshift that
maximizes the product ; and an
dominated regime at faint magnitudes, where the slope asymptotically approaches
-0.4(+1) controlled by post- galaxies. The slope of the
-band number counts presents an averaged decrement of in the range
(). The rate of change in the slope is
highly sensitive to cosmic variance effects. The decreasing trend is the
consequence of a prominent decrease of the characteristic density
( from to ) and an almost flat
evolution of (1 compatible with
in the same redshift range).Comment: 18 pages, 22 figures, Accepted by Astronomy & Astrophysic
Adaptive radiation in African weakly electric fish (Teleostei : Mormyridae : Campylomormyrus): a combined molecular and morphological approach
We combined multiple molecular markers and geometric morphometrics to revise the current taxonomy and to build a phylogenetic hypothesis for the African weakly electric fish genus Campylomormyrus. Genetic data (2039 bp DNA sequence of mitochondrial cytochrome b and nuclear S7 genes) on 106 specimens support the existence of at least six species occurring in sympatry. We were able to further confirm these species by microsatellite analysis at 16 unlinked nuclear loci and landmark-based morphometrics. We assigned them to nominal taxa by comparisons to type specimens of all Campylomormyrus species recognized so far. Additionally, we showed that the shape of the elongated trunk-like snout is the major source of morphological differentiation among them. This finding suggests that the radiation of this speciose genus might have been driven by adaptation to different food sources
Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei : Mormyridae : Campylomormyrus)
For two sympatric species of African weakly electric fish, Campylomormyrus tamandua and Campylomormyrus numenius, we monitored ontogenetic differentiation in electric organ discharge (EOD) and established a molecular phylogeny, based on 2222 bp from cytochrome b, the S7 ribosomal protein gene, and four flanking regions of unlinked microsatellite loci. In C tamandua, there is one common EOD type, regardless of age and sex, whereas in C numenius we were able to identify three different male adult EOD waveform types, which emerged from a single common EOD observed in juveniles. Two of these EOD types formed well supported clades in our phylogenetic analysis. In an independent line of evidence, we were able to affirm the classification into three groups by microsatellite data. The correct assignment and the high pairwise FST values support our hypothesis that these groups are reproductively isolated. We propose that in C numenius there are cryptic species, hidden behind similar and, at least as juveniles, identical morphs. (c) 2005 Elsevier Inc. All rights reserved
Evaluation of biospheric components in earth system models using modern and palaeo-observations: The state-of-the-art
PublishedJournal ArticleEarth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate-carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process-and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes. © 2013 Author(s).This paper emerged from the GREENCYCLESII
mini-conference “Evaluation of Earth system models using
modern and palaeo-observations” held at Clare College, Cambridge,
UK, in September 2012. We would like to thank the Marie
Curie FP7 Research and Training Network GREENCYCLESII for
providing funding which made this meeting possible. Research
leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7 2007–2013)
under grant agreement no. 238366. The work of C. D. Jones was
supported by the Joint DECC/Defra Met Office Hadley Centre
Climate Programme (GA01101). N. R. Edwards acknowledges
support from FP7 grant no. 265170 (ERMITAGE). N. Vázquez
Riveiros acknowledges support from the AXA Research Fund and
the Newton Trust
Extensive Copy-Number Variation of Young Genes across Stickleback Populations
MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
The evolution of the luminosity functions in the FORS Deep Field from low to high redshift: I. The blue bands
We use the very deep and homogeneous I-band selected dataset of the FORS Deep
Field (FDF) to trace the evolution of the luminosity function over the redshift
range 0.5 < z < 5.0. We show that the FDF I-band selection down to I(AB)=26.8
misses of the order of 10 % of the galaxies that would be detected in a K-band
selected survey with magnitude limit K(AB)=26.3 (like FIRES). Photometric
redshifts for 5558 galaxies are estimated based on the photometry in 9 filters
(U, B, Gunn g, R, I, SDSS z, J, K and a special filter centered at 834 nm). A
comparison with 362 spectroscopic redshifts shows that the achieved accuracy of
the photometric redshifts is (Delta z / (z_spec+1)) < 0.03 with only ~ 1 %
outliers. This allows us to derive luminosity functions with a reliability
similar to spectroscopic surveys. In addition, the luminosity functions can be
traced to objects of lower luminosity which generally are not accessible to
spectroscopy. We investigate the evolution of the luminosity functions
evaluated in the restframe UV (1500 Angstroem and 2800 Angstroem), u', B, and
g' bands. Comparison with results from the literature shows the reliability of
the derived luminosity functions. Out to redshifts of z ~ 2.5 the data are
consistent with a slope of the luminosity function approximately constant with
redshift, at a value of -1.07 +- 0.04 in the UV (1500 Angstroem, 2800
Angstroem) as well as u', and -1.25 +- 0.03 in the blue (g', B). We do not see
evidence for a very steep slope (alpha < -1.6) in the UV at z ~ 3.0 and z ~ 4.0
favoured by other authors. There may be a tendency for the faint-end slope to
become shallower with increasing redshift but the effect is marginal. We find a
brightening of M_star and a decrease of Phi_star with redshift for all analyzed
wavelengths. [abridged]Comment: 30 pages, re-submitted to A&A after referee comments have been taken
into account, full-resolution version available at
http://www.usm.uni-muenchen.de/people/gabasch/publications/gabasch_lfblue.p
Long-Term climate change commitment and reversibility: An EMIC intercomparison
This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. MostEMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6-6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs forRCPs 4.5-8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination ofCO2 emissions in allEMICs.Restoration of atmosphericCO2 fromRCPto preindustrial levels over 100-1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2. © 2013 American Meteorological Society.KZ and AJW acknowledge support from the National Science and Engineering Research Council (NSERC) Discovery Grant Program. AJW acknowledges support from NSERC's G8 Research Councils Initiative on Multilateral Research Funding Program. AVE and IIM were supported by the President of Russia Grant 5467.2012.5, by the Russian Foundation for Basic Research, and by the programs of the Russian Academy of Sciences. EC, TF, HG, and GPB acknowledge support from the Belgian Federal Science Policy Office. FJ, RS, and MS acknowledge support by the Swiss National Science Foundation and by the European Project CARBOCHANGE (Grant 264879), which received funding from the European Commission's Seventh Framework Programme (FP7/2007–2013). PBH and NRE acknowledge support from EU FP7 Grant ERMITAGE 265170
The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy
Observations of the extraordinarily bright optical afterglow (OA) of GRB
991208 started 2.1 d after the event. The flux decay constant of the OA in the
R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect,
and after that it is followed by a much steeper decay with constant -3.2 +/-
0.2, the fastest one ever seen in a GRB OA. A negative detection in several
all-sky films taken simultaneously to the event implies either a previous
additional break prior to 2 d after the occurrence of the GRB (as expected from
the jet effect). The existence of a second break might indicate a steepening in
the electron spectrum or the superposition of two events. Once the afterglow
emission vanished, contribution of a bright underlying SN is found, but the
light curve is not sufficiently well sampled to rule out a dust echo
explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7
Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be
relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB
coincides within 0.2" with the host galaxy, thus given support to a massive
star origin. The absolute magnitude is M_B = -18.2, well below the knee of the
galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1
Mo/yr. The quasi-simultaneous broad-band photometric spectral energy
distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0)
implying a cooling frequency below the optical band, i.e. supporting a jet
model with p = -2.30 as the index of the power-law electron distribution.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 6
figures (Fig. 3 and Fig. 4 have been updated
Recommended from our members
Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease.
International audienceRecently, several genome wide association studies (GWAS) have led to the discovery of 9 new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches.. We performed a genome wide haplotype association (GWHA) study in the EADI1 study (n=2,025 AD cases and 5,328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2,820 AD cases and 6,356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case-control studies (5,093 AD cases and 4,061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analysed (OR=1.68, 95% CI 1.43- 1.96; p=1.1x10-10). We finally searched for association between SNPs within the FRMD4A locus and Ab plasma concentrations in three independent non demented populations (n=2,579). We reported that polymorphisms were associated with plasma Ab42/Ab40 ratio (best signal, p=5.4x10-7). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD
- …
