135 research outputs found

    Predicting crystal structures: the Parrinello-Rahman method revisited

    Full text link
    By suitably adapting a recent approach [A. Laio and M. Parrinello, PNAS, 99, 12562 (2002)] we develop a powerful molecular dynamics method for the study of pressure-induced structural transformations. We use the edges of the simulation cell as collective variables. In the space of these variables we define a metadynamics that drives the system away from the local minimum towards a new crystal structure. In contrast to the Parrinello-Rahman method our approach shows no hysteresis and crystal structure transformations can occur at the equilibrium pressure. We illustrate the power of the method by studying the pressure-induced diamond to simple hexagonal phase transition in a model of silicon.Comment: 5 pages, 2 Postscript figures, submitte

    Design of a low band gap oxide ferroelectric: Bi6_6Ti4_4O17_{17}

    Full text link
    A strategy for obtaining low band gap oxide ferroelectrics based on charge imbalance is described and illustrated by first principles studies of the hypothetical compound Bi6_6Ti4_4O17_{17}, which is an alternate stacking of the ferroelectric Bi4_4Ti3_3O12_{12}. We find that this compound is ferroelectric, similar to Bi4_4Ti3_3O12_{12} although with a reduced polarization. Importantly, calculations of the electronic structure with the recently developed functional of Tran and Blaha yield a much reduced band gap of 1.83 eV for this material compared to Bi4_4Ti3_3O12_{12}. Therefore, Bi6_6Ti4_4O17_{17} is predicted to be a low band gap ferroelectric material

    Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners

    Full text link
    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct.Comment: 16 pages, 2 table, 7 figure

    Dipole-quadrupole interactions and the nature of phase III of compressed hydrogen

    Full text link
    A new class of strongly infrared active structures is identified for phase III of compressed molecular H2 by constant-pressure ab initio molecular dynamics and density-functional perturbation calculations. These are planar quadrupolar structures obtained as a distortion of low-pressure quadrupolar phases, after they become unstable at about 150 GPa due to a zone-boundary soft phonon. The nature of the II-III transition and the origin of the IR activity are rationalized by means of simple electrostatics, as the onset of a stabilizing dipole-quadrupole interaction.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let

    Solid molecular hydrogen: The Broken Symmetry Phase

    Full text link
    By performing constant-pressure variable-cell ab initio molecular dynamics simulations we find a quadrupolar orthorhombic structure, of Pca21Pca2_1 symmetry, for the broken symmetry phase (phase II) of solid H2 at T=0 and P =110 - 150 GPa. We present results for the equation of state, lattice parameters and vibronic frequencies, in very good agreement with experimental observations. Anharmonic quantum corrections to the vibrational frequencies are estimated using available data on H2 and D2. We assign the observed modes to specific symmetry representations.Comment: 5 pages (twocolumn), 4 Postscript figures. To appear in Phys. Rev. Let

    A critical assessment of the Self-Interaction Corrected Local Density Functional method and its algorithmic implementation

    Full text link
    We calculate the electronic structure of several atoms and small molecules by direct minimization of the Self-Interaction Corrected Local Density Approximation (SIC-LDA) functional. To do this we first derive an expression for the gradient of this functional under the constraint that the orbitals be orthogonal and show that previously given expressions do not correctly incorporate this constraint. In our atomic calculations the SIC-LDA yields total energies, ionization energies and charge densities that are superior to results obtained with the Local Density Approximation (LDA). However, for molecules SIC-LDA gives bond lengths and reaction energies that are inferior to those obtained from LDA. The nonlocal BLYP functional, which we include as a representative GGA functional, outperforms both LDA and SIC-LDA for all ground state properties we considered.Comment: 14 pages, 5 figure

    Metric tensor as the dynamical variable for variable cell-shape molecular dynamics

    Full text link
    We propose a new variable cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor, makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the densitary character of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first-principles of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review

    Molecular basis for the lack of enantioselectivity of human 3-phosphoglycerate kinase

    Get PDF
    Non-natural l-nucleoside analogues are increasingly used as therapeutic agents to treat cancer and viral infections. To be active, l-nucleosides need to be phosphorylated to their respective triphosphate metabolites. This stepwise phosphorylation relies on human enzymes capable of processing l-nucleoside enantiomers. We used crystallographic analysis to reveal the molecular basis for the low enantioselectivity and the broad specificity of human 3-phosphoglycerate kinase (hPGK), an enzyme responsible for the last step of phosphorylation of many nucleotide derivatives. Based on structures of hPGK in the absence of nucleotides, and bound to l and d forms of MgADP and MgCDP, we show that a non-specific hydrophobic clamp to the nucleotide base, as well as a water-filled cavity behind it, allows high flexibility in the interaction between PGK and the bases. This, combined with the dispensability of hydrogen bonds to the sugar moiety, and ionic interactions with the phosphate groups, results in the positioning of different nucleotides so to expose their diphosphate group in a position competent for catalysis. Since the third phosphorylation step is often rate limiting, our results are expected to alleviate in silico tailoring of l-type prodrugs to assure their efficient metabolic processing

    Molecular basis for the lack of enantioselectivity of human 3-phosphoglycerate kinase

    Get PDF
    Non-natural l-nucleoside analogues are increasingly used as therapeutic agents to treat cancer and viral infections. To be active, l-nucleosides need to be phosphorylated to their respective triphosphate metabolites. This stepwise phosphorylation relies on human enzymes capable of processing l-nucleoside enantiomers. We used crystallographic analysis to reveal the molecular basis for the low enantioselectivity and the broad specificity of human 3-phosphoglycerate kinase (hPGK), an enzyme responsible for the last step of phosphorylation of many nucleotide derivatives. Based on structures of hPGK in the absence of nucleotides, and bound to l and d forms of MgADP and MgCDP, we show that a non-specific hydrophobic clamp to the nucleotide base, as well as a water-filled cavity behind it, allows high flexibility in the interaction between PGK and the bases. This, combined with the dispensability of hydrogen bonds to the sugar moiety, and ionic interactions with the phosphate groups, results in the positioning of different nucleotides so to expose their diphosphate group in a position competent for catalysis. Since the third phosphorylation step is often rate limiting, our results are expected to alleviate in silico tailoring of l-type prodrugs to assure their efficient metabolic processing
    corecore