20 research outputs found

    Holographic renormalization and supersymmetry

    Get PDF
    Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N = 2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.Comment: 70 pages; corrected typo

    Scalar geometry and masses in Calabi-Yau string models

    Get PDF
    We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifold models and compare their characteristics. We start from a general formula for the Kahler potential as a function of the topological compactification data and study the structure of the curvature tensor. We then determine the conditions for the space to be symmetric and show that whenever this is the case the heterotic and the orientifold models give the same scalar manifold. We finally study the structure of scalar masses in this type of geometries, assuming that a generic superpotential triggers spontaneous supersymmetry breaking. We show in particular that their behavior crucially depends on the parameters controlling the departure of the geometry from the coset situation. We first investigate the average sGoldstino mass in the hidden sector and its sign, and study the implications on vacuum metastability and the mass of the lightest scalar. We next examine the soft scalar masses in the visible sector and their flavor structure, and study the possibility of realizing a mild form of sequestering relying on a global symmetry.Comment: 36 pages, no figure

    Metastable de Sitter vacua in N=2 to N=1 truncated supergravity

    Get PDF
    We study the possibility of achieving metastable de Sitter vacua in general N=2 to N=1 truncated supergravities without vector multiplets, and compare with the situations arising in N=2 theories with only hypermultiplets and N=1 theories with only chiral multiplets. In N=2 theories based on a quaternionic manifold and a graviphoton gauging, de Sitter vacua are necessarily unstable, as a result of the peculiar properties of the geometry. In N=1 theories based on a Kahler manifold and a superpotential, de Sitter vacua can instead be metastable provided the geometry satisfies some constraint and the superpotential can be freely adjusted. In N=2 to N=1 truncations, the crucial requirement is then that the tachyon of the mother theory be projected out from the daughter theory, so that the original unstable vacuum is projected to a metastable vacuum. We study the circumstances under which this may happen and derive general constraints for metastability on the geometry and the gauging. We then study in full detail the simplest case of quaternionic manifolds of dimension four with at least one isometry, for which there exists a general parametrization, and study two types of truncations defining Kahler submanifolds of dimension two. As an application, we finally discuss the case of the universal hypermultiplet of N=2 superstrings and its truncations to the dilaton chiral multiplet of N=1 superstrings. We argue that de Sitter vacua in such theories are necessarily unstable in weakly coupled situations, while they can in principle be metastable in strongly coupled regimes.Comment: 40 pages, no figure

    Naturalised Vitis Rootstocks in Europe and Consequences to Native Wild Grapevine

    Get PDF
    The genus Vitis is represented by several coexisting species in Europe. Our study focuses on naturalised rootstocks that originate in viticulture. The consequences of their presence to the landscape and to native European species (Vitis vinifera ssp. silvestris) are evaluated. This study compares ecological traits (seven qualitative and quantitative descriptors) and the genetic diversity (10 SSR markers) of populations of naturalised rootstocks and native wild grapevines. 18 large naturalised rootstock populations were studied in the RhĂ´ne watershed. Wild European grapevines are present in four main habitats (screes, alluvial forests, hedges, and streamside hedges). In contrast, naturalised rootstock populations are mainly located in alluvial forests, but they clearly take advantage of alluvial system dynamics and connectivity at the landscape level. These latter populations appear to reproduce sexually, and show a higher genetic diversity than Vitis vinifera ssp. silvestris. The regrouping of naturalised rootstocks in interconnected populations tends to create active hybrid swarms of rootstocks. The rootstocks show characters of invasive plants. The spread of naturalised rootstocks in the environment, the acceleration of the decline of the European wild grapevine, and the propagation of genes of viticultural interest in natural populations are potential consequences that should be kept in mind when undertaking appropriate management measures

    Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Get PDF
    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincar\'e supergravity.Comment: 30 page
    corecore