2,135 research outputs found
Measuring unsteady pressure on rotating compressor blades
Miniature semiconductor strain gage pressure transducers mounted in several arrangements were studied. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results show no failures of transducers or mountings and indicate an uncertainty of unsteady pressure measurement of approximately + or - 6 percent + 0.1 kPa for a typical application. Two configurations were used on a rotating fan flutter program. Examples of transducer data and correction factors are presented
Ultra Fast Nonlinear Optical Tuning of Photonic Crystal Cavities
We demonstrate fast (up to 20 GHz), low power (5 ) modulation of
photonic crystal (PC) cavities in GaAs containing InAs quantum dots. Rapid
modulation through blue-shifting of the cavity resonance is achieved via free
carrier injection by an above-band picosecond laser pulse. Slow tuning by
several linewidths due to laser-induced heating is also demonstrated
Global atmospheric sampling program
Automated instruments were installed on a commercial B-747 aircraft, during the program, to obtain baseline data and to monitor key atmospheric constituents associated with emissions of aircraft engines in order to determine if aircraft are contributing to pollution of the upper atmosphere. Data thus acquired on a global basis over the commercial air routes for 5 to 10 years will be analyzed. Ozone measurements in the 29,000 to 45,000 foot altitude were expanded over what has been available from ozonesondes. Limited aerosol composition measurements from filter samples show low levels of sulfates and nitrates in the upper troposphere. Recently installed instruments for measurement of carbon monoxide and condensation nuclei are beginning to return data
A bright nanowire single photon source based on SiV centers in diamond
The practical implementation of many quantum technologies relies on the
development of robust and bright single photon sources that operate at room
temperature. The negatively charged silicon-vacancy (SiV-) color center in
diamond is a possible candidate for such a single photon source. However, due
to the high refraction index mismatch to air, color centers in diamond
typically exhibit low photon out-coupling. An additional shortcoming is due to
the random localization of native defects in the diamond sample. Here we
demonstrate deterministic implantation of Si ions with high conversion
efficiency to single SiV- centers, targeted to fabricated nanowires. The
co-localization of single SiV- centers with the nanostructures yields a ten
times higher light coupling efficiency than for single SiV- centers in bulk
diamond. This enhanced photon out-coupling, together with the intrinsic
scalability of the SiV- creation method, enables a new class of devices for
integrated photonics and quantum science.Comment: 15 pages, 5 figure
Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling
We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory-inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis
Limitations of two-level emitters as nonlinearities in two-photon controlled-phase gates
We investigate the origin of imperfections in the fidelity of a two-photon
controlled-phase gate based on two-level-emitter non-linearities. We focus on a
passive system that operates without external modulations to enhance its
performance. We demonstrate that the fidelity of the gate is limited by
opposing requirements on the input pulse width for one- and two-photon
scattering events. For one-photon scattering, the spectral pulse width must be
narrow compared to the emitter linewidth, while two-photon scattering processes
require the pulse width and emitter linewidth to be comparable. We find that
these opposing requirements limit the maximum fidelity of the two-photon
controlled-phase gate for Gaussian photon pulses to 84%.Comment: 7 pages, 6 figure
- …