133 research outputs found

    Metric trees of generalized roundness one

    Full text link
    Every finite metric tree has generalized roundness strictly greater than one. On the other hand, some countable metric trees have generalized roundness precisely one. The purpose of this paper is to identify some large classes of countable metric trees that have generalized roundness precisely one. At the outset we consider spherically symmetric trees endowed with the usual combinatorial metric (SSTs). Using a simple geometric argument we show how to determine decent upper bounds on the generalized roundness of finite SSTs that depend only on the downward degree sequence of the tree in question. By considering limits it follows that if the downward degree sequence (d0,d1,d2...)(d_{0}, d_{1}, d_{2}...) of a SST (T,ρ)(T,\rho) satisfies {jdj>1}=0|\{j \, | \, d_{j} > 1 \}| = \aleph_{0}, then (T,ρ)(T,\rho) has generalized roundness one. Included among the trees that satisfy this condition are all complete nn-ary trees of depth \infty (n2n \geq 2), all kk-regular trees (k3k \geq 3) and inductive limits of Cantor trees. The remainder of the paper deals with two classes of countable metric trees of generalized roundness one whose members are not, in general, spherically symmetric. The first such class of trees are merely required to spread out at a sufficient rate (with a restriction on the number of leaves) and the second such class of trees resemble infinite combs.Comment: 14 pages, 2 figures, 2 table

    Group-invariant solutions of a nonlinear acoustics model

    Full text link
    Based on a recent classification of subalgebras of the symmetry algebra of the Zabolotskaya-Khokhlov equation, all similarity reductions of this equation into ordinary differential equations are obtained. Large classes of group-invariant solutions of the equation are also determined, and some properties of the reduced equations and exact solutions are discussed.Comment: 14 page

    Positive definite metric spaces

    Full text link
    Magnitude is a numerical invariant of finite metric spaces, recently introduced by T. Leinster, which is analogous in precise senses to the cardinality of finite sets or the Euler characteristic of topological spaces. It has been extended to infinite metric spaces in several a priori distinct ways. This paper develops the theory of a class of metric spaces, positive definite metric spaces, for which magnitude is more tractable than in general. Positive definiteness is a generalization of the classical property of negative type for a metric space, which is known to hold for many interesting classes of spaces. It is proved that all the proposed definitions of magnitude coincide for compact positive definite metric spaces and further results are proved about the behavior of magnitude as a function of such spaces. Finally, some facts about the magnitude of compact subsets of l_p^n for p \le 2 are proved, generalizing results of Leinster for p=1,2, using properties of these spaces which are somewhat stronger than positive definiteness.Comment: v5: Corrected some misstatements in the last few paragraphs. Updated reference

    Subspaces of L1L^{1} containing L1L^{1}

    No full text
    corecore