6 research outputs found

    Surfactant protein B gene variations enhance susceptibility to squamous cell carcinoma of the lung in German patients

    Get PDF
    Genetic factors are thought to influence the risk for lung cancer. Since pulmonary surfactant mediates the response to inhaled carcinogenic substances, candidate genes may be among those coding for pulmonary surfactant proteins. In the present matched case–control study a polymorphism within intron 4 of the gene coding for surfactant specific protein B was analysed in 357 individuals. They were divided into 117 patients with lung cancer (40 patients with small cell lung cancer, 77 patients with non small cell lung cancer), matched controls and 123 healthy individuals. Surfactant protein B gene variants were analysed using specific PCR and cloned surfactant protein B sequences as controls. The frequency of the intron 4 variation was similar in both control groups (13.0% and 9.4%), whereas it was increased in the small cell lung cancer group (17.5%) and the non small cell lung cancer group (16.9%). The gene variation was found significantly more frequently in patients with squamous cell carcinoma (25.0%, P=0.016, odds ratio=3.2, 95%CI=1.24–8.28) than in the controls. These results indicate an association of the surfactant protein B intron 4 variants and/or its flanking loci with mechanisms that may enhance lung cancer susceptibility, especially to squamous cell carcinoma of the lung

    Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes.

    No full text
    We have localized the DNA sequences required for mitotic centromere function on the human Y chromosome. Analysis of 33 rearranged Y chromosomes allowed the centromere to be placed in interval 8 of a 24-interval deletion map. Although this interval is polymorphic in size, it can be as small as approximately 500kb. It contains alphoid satellite DNA and approximately 300kb of adjacent Yp sequences. Chromosomes with rearrangements in this region were analysed in detail. Two translocation chromosomes and one monocentric isochromosome had breakpoints within the alphoid array. Of 12 suppressed Y centromeres on translocation chromosomes and dicentric isochromosomes that were also analysed two showed deletions one of which only removed alphoid DNA. These results indicate that alphoid DNA is a functional part of the Y chromosome centromere
    corecore