21,827 research outputs found
Environmental Problems of Space Flight Structures. 2. Meteoroid Hazard
Environmental problems of space flight structures - part 2, meteoroid hazard
Kohn-Sham calculations combined with an average pair-density functional theory
A recently developed formalism in which Kohn-Sham calculations are combined
with an ``average pair density functional theory'' is reviewed, and some new
properties of the effective electron-electron interaction entering in this
formalism are derived. A preliminary construction of a fully self-consitent
scheme is also presented in this framework.Comment: submitted to Int. J. Mod. Phys. B (proceedings of the 30th
International Workshop on Condensed Matter Theories
On phase behavior and dynamical signatures of charged colloidal platelets
We investigate the competition between anisotropic excluded-volume and
repulsive electrostatic interactions in suspensions of thin charged colloidal
discs, by means of Monte-Carlo simulations and dynamical characterization of
the structures found. We show that the original intrinsic anisotropy of the
electrostatic potential between charged platelets, obtained within the
non-linear Poisson-Boltzmann formalism, not only rationalizes the generic
features of the complex phase diagram of charged colloidal platelets such as
Gibbsite and Beidellite clays, but also predicts the existence of novel
structures. In addition, we find evidences of a strong slowing down of the
dynamics upon increasing density.Comment: 6 pages, 6 Figure
Lost in translation: data integration tools meet the Semantic Web (experiences from the Ondex project)
More information is now being published in machine processable form on the
web and, as de-facto distributed knowledge bases are materializing, partly
encouraged by the vision of the Semantic Web, the focus is shifting from the
publication of this information to its consumption. Platforms for data
integration, visualization and analysis that are based on a graph
representation of information appear first candidates to be consumers of
web-based information that is readily expressible as graphs. The question is
whether the adoption of these platforms to information available on the
Semantic Web requires some adaptation of their data structures and semantics.
Ondex is a network-based data integration, analysis and visualization platform
which has been developed in a Life Sciences context. A number of features,
including semantic annotation via ontologies and an attention to provenance and
evidence, make this an ideal candidate to consume Semantic Web information, as
well as a prototype for the application of network analysis tools in this
context. By analyzing the Ondex data structure and its usage, we have found a
set of discrepancies and errors arising from the semantic mismatch between a
procedural approach to network analysis and the implications of a web-based
representation of information. We report in the paper on the simple methodology
that we have adopted to conduct such analysis, and on issues that we have found
which may be relevant for a range of similar platformsComment: Presented at DEIT, Data Engineering and Internet Technology, 2011
IEEE: CFP1113L-CD
Non-equilibrium dynamics of gene expression and the Jarzynski equality
In order to express specific genes at the right time, the transcription of
genes is regulated by the presence and absence of transcription factor
molecules. With transcription factor concentrations undergoing constant
changes, gene transcription takes place out of equilibrium. In this paper we
discuss a simple mapping between dynamic models of gene expression and
stochastic systems driven out of equilibrium. Using this mapping, results of
nonequilibrium statistical mechanics such as the Jarzynski equality and the
fluctuation theorem are demonstrated for gene expression dynamics. Applications
of this approach include the determination of regulatory interactions between
genes from experimental gene expression data
Water- and Boron-Rich Melt Inclusions in Quartz from the Malkhan Pegmatite, Transbaikalia, Russia
In this paper we show that the pegmatite-forming processes responsible for the formation of the Malkhan pegmatites started at magmatic temperatures around 720 °C. The primary melts or supercritical fluids were very water- and boron-rich (maximum values of about 10% (g/g) B2O3) and over the temperature interval from 720 to 600 °C formed a pseudobinary solvus, indicated by the coexistence of two types of primary melt inclusions (type-A and type-B) representing a pair of conjugate melts. Due to the high water and boron concentration the pegmatite-forming melts are metastable and can be characterized either as genuine melts or silicate-rich fluids. This statement is underscored by Raman spectroscopic studies. This study suggested that the gel state proposed by some authors cannot represent the main stage of the pegmatite-forming processes in the Malkhan pegmatites, and probably in all others. However there are points in the evolution of the pegmatites where the gel- or gel-like state has left traces in form of real gel inclusions in some mineral in the Malkhan pegmatite, however only in a late, fluid dominated stage
Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems
Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in which they are presumptuous. After elaborating this moral concern, I explore the possibility that carefully procuring the training data for image recognition systems could ensure that the systems avoid the problem. The lesson of this paper extends beyond just the particular case of image recognition systems and the challenge of responsibly identifying a person’s intentions. Reflection on this particular case demonstrates the importance (as well as the difficulty) of evaluating machine learning systems and their training data from the standpoint of moral considerations that are not encompassed by ordinary assessments of predictive accuracy
Nonlinear Electron Oscillations in a Viscous and Resistive Plasma
New non-linear, spatially periodic, long wavelength electrostatic modes of an
electron fluid oscillating against a motionless ion fluid (Langmuir waves) are
given, with viscous and resistive effects included. The cold plasma
approximation is adopted, which requires the wavelength to be sufficiently
large. The pertinent requirement valid for large amplitude waves is determined.
The general non-linear solution of the continuity and momentum transfer
equations for the electron fluid along with Poisson's equation is obtained in
simple parametric form. It is shown that in all typical hydrogen plasmas, the
influence of plasma resistivity on the modes in question is negligible. Within
the limitations of the solution found, the non-linear time evolution of any
(periodic) initial electron number density profile n_e(x, t=0) can be
determined (examples). For the modes in question, an idealized model of a
strictly cold and collisionless plasma is shown to be applicable to any real
plasma, provided that the wavelength lambda >> lambda_{min}(n_0,T_e), where n_0
= const and T_e are the equilibrium values of the electron number density and
electron temperature. Within this idealized model, the minimum of the initial
electron density n_e(x_{min}, t=0) must be larger than half its equilibrium
value, n_0/2. Otherwise, the corresponding maximum n_e(x_{max},t=tau_p/2),
obtained after half a period of the plasma oscillation blows up. Relaxation of
this restriction on n_e(x, t=0) as one decreases lambda, due to the increase of
the electron viscosity effects, is examined in detail. Strong plasma viscosity
is shown to change considerably the density profile during the time evolution,
e.g., by splitting the largest maximum in two.Comment: 16 one column pages, 11 figures, Abstract and Sec. I, extended, Sec.
VIII modified, Phys. Rev. E in pres
Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices
A new iterative method is developed to numerically calculate the periodic,
matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV)
equations describing the transverse evolution of a beam in a periodic, linear
focusing lattice of arbitrary complexity. Implementation of the method is
straightforward. It is highly convergent and can be applied to all usual
parameterizations of the matched envelope solutions. The method is applicable
to all classes of linear focusing lattices without skew couplings, and also
applies to all physically achievable system parameters -- including where the
matched beam envelope is strongly unstable. Example applications are presented
for periodic solenoidal and quadrupole focusing lattices. Convergence
properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide
Custodial SO(4) symmetry and CP violation in N-Higgs-doublet potentials
We study the implementation of global
symmetry in general potentials with N-Higgs-doublets in order to obtain models
with custodial symmetry. We conclude that any implementation of the
custodial SO(4) symmetry is equivalent, by a basis transformation, to a
canonical one if is the gauge factor, is embedded in
and we require copies of the doublet representation of .
The invariance by SO(4) automatically leads to a CP invariant potential and the
basis of the canonical implementation of SO(4) is aligned to a basis where
CP-symmetry acts in the standard fashion. We show different but equivalent
implementations for the 2HDM, including an implementation not previously
considered.Comment: 22pp, REVTeX4. Published versio
- …