160 research outputs found
Leukocytes Are Recruited through the Bronchial Circulation to the Lung in a Spontaneously Hypertensive Rat Model of COPD
Chronic obstructive pulmonary disease (COPD) kills approximately 2.8 million people each year, and more than 80% of COPD cases can be attributed to smoking. Leukocytes recruited to the lung contribute to COPD pathology by releasing reactive oxygen metabolites and proteolytic enzymes. In this work, we investigated where leukocytes enter the lung in the early stages of COPD in order to better understand their effect as a contributor to the development of COPD. We simultaneously evaluated the parenchyma and airways for neutrophil accumulation, as well as increases in the adhesion molecules and chemokines that cause leukocyte recruitment in the early stages of tobacco smoke induced lung disease. We found neutrophil accumulation and increased expression of adhesion molecules and chemokines in the bronchial blood vessels that correlated with the accumulation of leukocytes recovered from the lung. The expression of adhesion molecules and chemokines in other vascular beds did not correlate with leukocytes recovered in bronchoalveolar lavage fluid (BALF). These data strongly suggest leukocytes are recruited in large measure through the bronchial circulation in response to tobacco smoke. Our findings have important implications for understanding the etiology of COPD and suggest that pharmaceuticals designed to reduce leukocyte recruitment through the bronchial circulation may be a potential therapy to treat COPD
Recommended from our members
Clinical Significance of Bronchodilator Responsiveness Evaluated by Forced Vital Capacity in COPD: SPIROMICS Cohort Analysis.
ObjectiveBronchodilator responsiveness (BDR) is prevalent in COPD, but its clinical implications remain unclear. We explored the significance of BDR, defined by post-bronchodilator change in FEV1 (BDRFEV1) as a measure reflecting the change in flow and in FVC (BDRFVC) reflecting the change in volume.MethodsWe analyzed 2974 participants from a multicenter observational study designed to identify varying COPD phenotypes (SPIROMICS). We evaluated the association of BDR with baseline clinical characteristics, rate of prospective exacerbations and mortality using negative binomial regression and Cox proportional hazards models.ResultsA majority of COPD participants exhibited BDR (52.7%). BDRFEV1 occurred more often in earlier stages of COPD, while BDRFVC occurred more frequently in more advanced disease. When defined by increases in either FEV1 or FVC, BDR was associated with a self-reported history of asthma, but not with blood eosinophil counts. BDRFVC was more prevalent in subjects with greater emphysema and small airway disease on CT. In a univariate analysis, BDRFVC was associated with increased exacerbations and mortality, although no significance was found in a model adjusted for post-bronchodilator FEV1.ConclusionWith advanced airflow obstruction in COPD, BDRFVC is more prevalent in comparison to BDRFEV1 and correlates with the extent of emphysema and degree of small airway disease. Since these associations appear to be related to the impairment of FEV1, BDRFVC itself does not define a distinct phenotype nor can it be more predictive of outcomes, but it can offer additional insights into the pathophysiologic mechanism in advanced COPD.Clinical trials registrationClinicalTrials.gov: NCT01969344T4
Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)
Background
Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a multi-center longitudinal, observational study to identify novel phenotypes and biomarkers of chronic obstructive pulmonary disease (COPD). In a subset of 300 subjects enrolled at six clinical centers, we are performing flow cytometric analyses of leukocytes from induced sputum, bronchoalveolar lavage (BAL) and peripheral blood. To minimize several sources of variability, we use a “just-in-time” design that permits immediate staining without pre-fixation of samples, followed by centralized analysis on a single instrument.
Methods
The Immunophenotyping Core prepares 12-color antibody panels, which are shipped to the six Clinical Centers shortly before study visits. Sputum induction occurs at least two weeks before a bronchoscopy visit, at which time peripheral blood and bronchoalveolar lavage are collected. Immunostaining is performed at each clinical site on the day that the samples are collected. Samples are fixed and express shipped to the Immunophenotyping Core for data acquisition on a single modified LSR II flow cytometer. Results are analyzed using FACS Diva and FloJo software and cross-checked by Core scientists who are blinded to subject data.
Results
Thus far, a total of 152 sputum samples and 117 samples of blood and BAL have been returned to the Immunophenotyping Core. Initial quality checks indicate useable data from 126 sputum samples (83%), 106 blood samples (91%) and 91 BAL samples (78%). In all three sample types, we are able to identify and characterize the activation state or subset of multiple leukocyte cell populations (including CD4+ and CD8+ T cells, B cells, monocytes, macrophages, neutrophils and eosinophils), thereby demonstrating the validity of the antibody panel.
Conclusions
Our study design, which relies on bi-directional communication between clinical centers and the Core according to a pre-specified protocol, appears to reduce several sources of variability often seen in flow cytometric studies involving multiple clinical sites. Because leukocytes contribute to lung pathology in COPD, these analyses will help achieve SPIROMICS aims of identifying subgroups of patients with specific COPD phenotypes. Future analyses will correlate cell-surface markers on a given cell type with smoking history, spirometry, airway measurements, and other parameters.
Trial registration
This study was registered with ClinicalTrials.gov as NCT01969344
Biomarkers Predictive of Exacerbations in the SPIROMICS and COPDGene Cohorts
Rationale: Chronic obstructive pulmonary disease exacerbations are associated with disease progression, higher healthcare cost, and increased mortality. Published predictors of future exacerbations include previous exacerbation, airflow obstruction, poor overall health, home oxygen use, and gastroesophageal reflux
Comparison of Proteomic Assessment Methods in Multiple Cohort Studies
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155922/1/pmic13292_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155922/2/pmic13292.pd
Future research directions in acute lung injury: Summary of a National Heart, Lung, and Blood Institute Working Group
Acute lung injury (ALI) and its more severe form, the acute respiratory distress syndrome (ARDS), are syndromes of acute respiratory failure that result from acute pulmonary edema and inflammation. The development of ALI/ARDS is associated with several clinical disorders including direct pulmonary injury from pneumonia and aspiration as well as indirect pulmonary injury from trauma, sepsis, and other disorders such as acute pancreatitis and drug overdose. Although mortality from ALI/ARDS has decreased in the last decade, it remains high. Despite two major advances in treatment, low VT ventilation for ALI/ARDS and activated protein C for severe sepsis (the leading cause of ALI/ARDS), additional research is needed to develop specific treatments and improve understanding of the pathogenesis of these syndromes. The NHLBI convened a working group to develop specific recommendations for future ALI/ARDS research. Improved understanding of disease heterogeneity through use of evolving biologic, genomic, and genetic approaches should provide major new insights into pathogenesis of ALI. Cellular and molecular methods combined with animal and clinical studies should lead to further progress in the detection and treatment of this complex disease
Future research directions in pneumonia
Copyright © 2018 by the American Thoracic Society. Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group’s specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia
Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles
Nanometre-sized objects with highly symmetrical, cage-like polyhedral shapes, often with icosahedral symmetry, have recently been assembled from DNA(1-3), RNA(4) or proteins(5,6) for applications in biology and medicine. These achievements relied on advances in the development of programmable self-assembling biological materials(7-10), and on rapidly developing techniques for generating three-dimensional (3D) reconstructions from cryo-electron microscopy images of single particles, which provide high-resolution structural characterization of biological complexes(11-13). Such single-particle 3D reconstruction approaches have not yet been successfully applied to the identification of synthetic inorganic nanomaterials with highly symmetrical cage-like shapes. Here, however, using a combination of cryo-electron microscopy and single-particle 3D reconstruction, we suggest the existence of isolated ultrasmall (less than 10 nm) silica cages ('silicages') with dodecahedral structure. We propose that such highly symmetrical, self-assembled cages form through the arrangement of primary silica clusters in aqueous solutions on the surface of oppositely charged surfactant micelles. This discovery paves the way for nanoscale cages made from silica and other inorganic materials to be used as building blocks for a wide range of advanced functional-materials applications
- …