849 research outputs found
Food insecurity in veteran households: findings from nationally representative data
OBJECTIVE: The present study is the first to use nationally representative data to compare rates of food insecurity among households with veterans of the US Armed Forces and non-veteran households. DESIGN: We used data from the 2005-2013 waves of the Current Population Survey - Food Security Supplement to identify rates of food insecurity and very low food security in veteran and non-veteran households. We estimated the odds and probability of food insecurity in veteran and non-veteran households in uncontrolled and controlled models. We replicated these results after separating veteran households by their most recent period of service. We weighted models to create nationally representative estimates. SETTING: Nationally representative data from the 2005-2013 waves of the Current Population Survey - Food Security Supplement. SUBJECTS: US households (n 388 680). RESULTS: Uncontrolled models found much lower rates of food insecurity (8·4 %) and very low food security (3·3 %) among veteran households than in non-veteran households (14·4 % and 5·4 %, respectively), with particularly low rates among households with older veterans. After adjustment, average rates of food insecurity and very low food security were not significantly different for veteran households. However, the probability of food insecurity was significantly higher among some recent veterans and significantly lower for those who served during the Vietnam War. CONCLUSIONS: Although adjusting eliminated many differences between veteran and non-veteran households, veterans who served from 1975 and onwards may be at higher risk for food insecurity and should be the recipients of targeted outreach to improve nutritional outcomes
A microfabricated sensor for thin dielectric layers
We describe a sensor for the measurement of thin dielectric layers capable of
operation in a variety of environments. The sensor is obtained by
microfabricating a capacitor with interleaved aluminum fingers, exposed to the
dielectric to be measured. In particular, the device can measure thin layers of
solid frozen from a liquid or gaseous medium. Sensitivity to single atomic
layers is achievable in many configurations and, by utilizing fast, high
sensitivity capacitance read out in a feedback system onto environmental
parameters, coatings of few layers can be dynamically maintained. We discuss
the design, read out and calibration of several versions of the device
optimized in different ways. We specifically dwell on the case in which
atomically thin solid xenon layers are grown and stabilized, in cryogenic
conditions, from a liquid xenon bath
Quantum Communication with Phantom Photons
We show that quantum information may be transferred between atoms in
different locations by using ``phantom photons'': the atoms are coupled through
electromagnetic fields, but the corresponding field modes do not have to be
fully populated. In the case where atoms are placed inside optical cavities,
errors in quantum information processing due to photon absorption inside the
cavity are diminished in this way. This effect persists up to intercavity
distances of about a meter for the current levels of cavity losses, and may be
useful for distributed quantum computing.Comment: 6 pages RevTex, 4 eps figures included. Revised calculation with more
details about mode structure calculation and the introduction of losse
Characterization of high finesse mirrors: loss, phase shifts and mode structure in an optical cavity
An extensive characterization of high finesse optical cavities used in cavity
QED experiments is described. Different techniques in the measurement of the
loss and phase shifts associated with the mirror coatings are discussed and
their agreement shown. Issues of cavity field mode structure supported by the
dielectric coatings are related to our effort to achieve the strongest possible
coupling between an atom and the cavity.Comment: 8 pages, 4 figure
Two-atom dark states in electromagnetic cavities
The center-of-mass motion of two two-level atoms coupled to a single damped
mode of an electromagnetic resonator is investigated. For the case of one atom
being initially excited and the cavity mode in the vacuum state it is shown
that the atomic time evolution is dominated by the appearance of dark states.
These states, in which the initial excitation is stored in the internal atomic
degrees of freedom and the atoms become quantum mechanically entangled, are
almost immune against photon loss from the cavity. Various properties of the
dark states within and beyond the Raman-Nath approximation of atom optics are
worked out.Comment: 8 pages, 4 figure
A trapped single ion inside a Bose-Einstein condensate
Improved control of the motional and internal quantum states of ultracold
neutral atoms and ions has opened intriguing possibilities for quantum
simulation and quantum computation. Many-body effects have been explored with
hundreds of thousands of quantum-degenerate neutral atoms and coherent
light-matter interfaces have been built. Systems of single or a few trapped
ions have been used to demonstrate universal quantum computing algorithms and
to detect variations of fundamental constants in precision atomic clocks. Until
now, atomic quantum gases and single trapped ions have been treated separately
in experiments. Here we investigate whether they can be advantageously combined
into one hybrid system, by exploring the immersion of a single trapped ion into
a Bose-Einstein condensate of neutral atoms. We demonstrate independent control
over the two components within the hybrid system, study the fundamental
interaction processes and observe sympathetic cooling of the single ion by the
condensate. Our experiment calls for further research into the possibility of
using this technique for the continuous cooling of quantum computers. We also
anticipate that it will lead to explorations of entanglement in hybrid quantum
systems and to fundamental studies of the decoherence of a single, locally
controlled impurity particle coupled to a quantum environment
Comparisons of binary black hole merger waveforms
This a particularly exciting time for gravitational wave physics.
Ground-based gravitational wave detectors are now operating at a sensitivity
such that gravitational radiation may soon be directly detected, and recently
several groups have independently made significant breakthroughs that have
finally enabled numerical relativists to solve the Einstein field equations for
coalescing black-hole binaries, a key source of gravitational radiation. The
numerical relativity community is now in the position to begin providing
simulated merger waveforms for use by the data analysis community, and it is
therefore very important that we provide ways to validate the results produced
by various numerical approaches. Here, we present a simple comparison of the
waveforms produced by two very different, but equally successful
approaches--the generalized harmonic gauge and the moving puncture methods. We
compare waveforms of equal-mass black hole mergers with minimal or vanishing
spins. The results show exceptional agreement for the final burst of radiation,
with some differences attributable to small spins on the black holes in one
case.Comment: Revtex 4, 5 pages. Published versio
Preparation of decoherence-free, subradiant states in a cavity
The cause of decoherence in a quantum system can be traced back to the
interaction with the environment. As it has been pointed out first by Dicke, in
a system of N two-level atoms where each of the atoms is individually dipole
coupled to the environment, there are collective, subradiant states, that have
no dipole coupling to photon modes, and therefore they are expected to decay
slower. This property also implies that these type of states, which form an N-1
dimensional subspace of the atomic subsytem, also decohere slower. We propose a
scheme which will create such states. First the two-level atoms are placed in a
strongly detuned cavity and one of the atoms, called the control atom is
excited. The time evolution of the coupled atom-cavity system leads to an
appropriately entangled state of the atoms. By applying subsequent laser pulses
at a well defined time instant, it is possible to drive the atomic state into
the subradiant, i. e., decoherence free subspace. Up to a certain average
number of the photons, the result is independent of the state of the cavity.
The analysis of the conditions shows that this scheme is feasible with present
day techniques achieved in atom cavity interaction experiments.Comment: 5 page
Preserving coherence in quantum computation by pairing quantum bits
A scheme is proposed for protecting quantum states from both independent
decoherence and cooperative decoherence. The scheme operates by pairing each
qubit (two-state quantum system) with an ancilla qubit and by encoding the
states of the qubits into the corresponding coherence-preserving states of the
qubit-pairs. In this scheme, the amplitude damping (loss of energy) is
prevented as well as the phase damping (dephasing) by a strategy called the
free-Hamiltonian-elimination We further extend the scheme to include quantum
gate operations and show that loss and decoherence during the gate operations
can also be prevented.Comment: 12 pages, Latex, some correction in the reference and introduction.
Jour-ref: Phys. Rev. Lett. 79, 1953, 199
- …
