176 research outputs found

    The impact of mosaicism in preimplantation genetic diagnosis (PGD): approaches to PGD for dominant disorders in couples without family history

    Get PDF
    OBJECTIVES: Mosaicism in certain dominant disorders may result in a 'non-Mendelian' transmission for the causative mutation. Preimplantation genetic diagnosis (PGD) is available for patients with inherited disorders to achieve an unaffected pregnancy. We present our experience for two female patients with different dominantly inherited autosomal disorders; neurofibromatosis type 1 (NF1) and tuberous sclerosis complex type 2 (TSC2). METHODS: PGD protocol development was carried out using single cells from the patients. PGD was carried out on polar bodies and different embryonic cells. RESULTS: Protocol development for NF1 using lymphocytes from the patient suggested mosaicism for the mutation. This was supported further by quantitative fluorescent-PCR performed on genomic DNA. During PGD, polar bodies and blastomeres lacked the mutation that probably was absent or present at very low levels in the patient's germline. Single lymphocyte analysis during protocol development for TSC2 did not indicate mosaicism; however, analysis of single buccal cells and multiple embryo biopsies across two consecutive IVF/PGD cycles confirmed gonosomal mosaicism. CONCLUSIONS: The trend in PGD is for blastocyst biopsy followed by whole genome amplification, eliminating single cell analysis. In the case of certain dominantly inherited disorders, pre-PGD single cell analysis is beneficial to identify potential mosaicism that ensures robust protocols. © 2016 John Wiley & Sons, Ltd

    Next Generation Sequencing Detects Premeiotic Errors in Human Oocytes

    Get PDF
    Autosomal aneuploidy is the leading cause of embryonic and foetal death in humans. This arises mainly from errors in meiosis I or II of oogenesis. A largely ignored source of error stems from germinal mosaicism, which leads to premeiotic aneuploidy. Molecular cytogenetic studies employing metaphase fluorescence in situ hybridization and comparative genomic hybridisation suggest that premeiotic aneuploidy may affect 10–20% of oocytes overall. Such studies have been criticised on technical grounds. We report here an independent study carried out on unmanipulated oocytes that have been analysed using next generation sequencing (NGS). This study confirms that the incidence of premeiotic aneuploidy in an unselected series of oocytes exceeds 10%. A total of 140 oocytes donated by 42 women gave conclusive results; of these, 124 (88.5%) were euploid. Sixteen out of 140 (11.4%) provided evidence of premeiotic aneuploidy. Of the 140, 112 oocytes were immature (germinal vesicle or metaphase I), of which 10 were aneuploid (8.93%); the remaining 28 were intact metaphase II-first polar body complexes, and six of these were aneuploid (21.4%). Of the 16 aneuploid cells, half contained simple errors (one or two abnormal chromosomes) and half contained complex errors. We conclude that germinal mosaicism leading to premeiotic aneuploidy is a consistent finding affecting at least 10% of unselected oocytes from women undergoing egg collection for a variety of reasons. The importance of premeiotic aneuploidy lies in the fact that, for individual oocytes, it greatly increases the risk of an aneuploid mature oocyte irrespective of maternal age. As such, this may account for some cases of aneuploid conceptions in very young women

    Errors in chromosome segregation during oogenesis and early embryogenesis

    Get PDF
    Errors in chromosome segregation occurring during human oogenesis and early embryogenesis are very common. Meiotic chromosome development during oogenesis is subdivided into three distinct phases. The crucial events, including meiotic chromosome pairing and recombination, take place from around 11 weeks until birth. Oogenesis is then arrested until ovulation, when the first meiotic division takes place, with the second meiotic division not completed until after fertilization. It is generally accepted that most aneuploid fetal conditions, such as trisomy 21 Down syndrome, are due to maternal chromosome segregation errors. The underlying reasons are not yet fully understood. It is also clear that superimposed on the maternal meiotic chromosome segregation errors, there are a large number of mitotic errors taking place post-zygotically during the first few cell divisions in the embryo. In this chapter, we summarise current knowledge of errors in chromosome segregation during oogenesis and early embryogenesis, with special reference to the clinical implications for successful assisted reproduction

    The origin and significance of additional aneuploidy events in couples undergoing preimplantation genetic diagnosis for translocations by array comparative genomic hybridization

    Get PDF
    Diagnostic application of array comparative genomic hybridization (aCGH) in preimplantation genetic diagnosis for reciprocal and Robertsonian translocations has revealed 55–65% embryos with additional aneuploidies with or without translocation-related imbalances. The occurrence of these extra abnormalities with the balanced form of the translocation reduces the number of embryos suitable for transfer. Eighty-three embryos were followed up on days 5–7 of development from 23 infertile or sub-fertile carriers for whole chromosome and segmental aneuploidies present in addition to the balanced or unbalanced translocations detected on aCGH diagnosis. Embryos were analysed by fluorescence in-situ hybridization (n = 63) and aCGH (n = 20). Meiotic aneuploidy affected 35% of embryos and 47% had mitotic events; 15% had both types. Meiotic and mitotic events were almost equal (60 versus 64), 97 affected whole chromosomes (58 meiotic, 39 mitotic) and 27 were segmental (two meiotic, 25 mitotic). In 85.5% of embryos with whole chromosome additional aneuploidies, the aneuploidy was present throughout or in more than 50% of cells. All embryos diagnosed as abnormal (translocation balanced or unbalanced) after aCGH diagnosis at cleavage stage would have remained unsuitable for transfer if tested at later stages of development. Additional aneuploidies merit full consideration when considering the choice of embryos to transfer

    Deletion of the ghrelin receptor GHSR corrects the trabecular, but not the cortical bone changes in the femoral head of ob/ob mice

    Get PDF
    Background: There exists an intriguing and complex relationship between fat and bone cells with respect to aging and osteoporosis, which is mediated in part by leptin. Genetically obese mice (ob/ob), that lack leptin, have aheterogeneous bone phenotype, with differential effects on cortical and trabecular compartments. Besides its role in bone metabolism, leptin is most well known for its anorexigenic properties. Opposed in action to leptin is ghrelin, a potent orexigenic peptide hormone derived from the stomach. Ghrelin and leptin also act as each other’s antagonists in gonadal and immune system function.Objective: To determine if ghrelin opposes leptin action on bone metabolism.Methods: Characterization of femoral micro-architecture in 6 months old male wild type, ob/ob, ghrelin receptor knockout (Ghsr -/-), and ob/ob.Ghsr-/- mice using micro-computed tomography.Results: Deletion of Ghsr alone did not significantly alter bone micro-architecture in wild type mice. Deletion of leptin reduced cortical volume and thickness in the femoral head of wild type mice, while it increased endocortical volume. Tissue volume remained unaffected. Conversely, deletion of leptin increased trabecular bone volume, trabecular number and connectivity in wild type mice. Additional deletion of Ghsr in ob/ob mice restored the changes to wild type levels in trabecular bone, but not in cortical bone (all not significant).Conclusion: We found that leptin deficiency has a negative effect on cortical and a positive effect on trabecular bone micro-architecture, confirming the heterogeneous skeletal effects observed by others in ob/ob mice. Knocking out ghrelin signaling compensates for the effect of leptin deficiency on trabecular bone. These observations demonstrate the positive activity of ghrelin signaling in bone, and suggest that ghrelin and leptin have opposing actions on bone metabolism
    • …
    corecore