79,336 research outputs found

    Probation training: the experience of teachers and learners

    Get PDF
    Original article can be found at: http://www.informaworld.com/ Copyright Informa / Taylor and Francis GroupQualifying training in probation is under review and likely to be substantially changed. This article draws on a small scale study of current training arrangements designed to explore the views of trainee probation officers, practice development assessors and university tutors regarding which elements of the current Diploma in Probation Studies framework most support learning. Their comments focus on the organisational ownership of training, time and learning, the teacher-learner relationship, teaching methods and equality of access. It is argued that probation training is best supported by a series of linked qualifications across grades, integrating practice-based and academic learning delivered through a 'blended learning' model.Peer reviewe

    How bio-friendly is the universe

    Full text link
    The oft-repeated claim that life is written into the laws of nature are examined and criticized. Arguments are given in favour of life spreading between near-neighbour planets in rocky impact ejecta (transpermia), but against panspermia, leading to the conclusion that if life is indeed found to be widespread in the universe, some form of life principle or biological determinism must be at work in the process of biogenesis. Criteria for what would constitute a credible life principle are elucidated. I argue that the key property of life is its information content, and speculate that the emergence of the requisite information-processing machinery might require quantum information theory for a satisfactory explanation. Some clues about how decoherence might be evaded are discussed. The implications of some of these ideas for fine tuning are discussed.Comment: 11 page conference report, no figure

    Quantum mechanics and the equivalence principle

    Full text link
    A quantum particle moving in a gravitational field may penetrate the classically forbidden region of the gravitational potential. This raises the question of whether the time of flight of a quantum particle in a gravitational field might deviate systematically from that of a classical particle due to tunnelling delay, representing a violation of the weak equivalence principle. I investigate this using a model quantum clock to measure the time of flight of a quantum particle in a uniform gravitational field, and show that a violation of the equivalence principle does not occur when the measurement is made far from the turning point of the classical trajectory. I conclude with some remarks about the strong equivalence principle in quantum mechanics.Comment: 10 pages, 1 figure, research pape

    Where do perturbative and non-perturbative QCD meet?

    Get PDF
    We computed the static potential and Wilson loops to O(α2)O(\alpha^2) in perturbation theory for different lattice quark and gluon actions. In general, we find short distance lattice data to be well described by ``boosted perturbation theory''. For Wilson-type fermions at present-day quark masses and lattice spacings agreement within 10% between measured ``β\beta-shifts'' and those predicted by perturbation theory is found. We comment on prospects for a determination of the real world QCD running coupling.Comment: 3 pages, 4 figures, Talk at Lattice 2001 in renormalisation and improvement sessio

    Quantum fluctuations and life

    Full text link
    There have been many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms, beyond merely providing the basis for the shapes and sizes of biological molecules and their chemical affinities. These range from the suggestion by Schrodinger that quantum fluctuations produce mutations, to the conjecture by Hameroff and Penrose that quantum coherence in microtubules is linked to consciousness. I review some of these claims in this paper, and discuss the serious problem of decoherence. I advance some further conjectures about quantum information processing in bio-systems. Some possible experiments are suggested.Comment: 10 pages, no figures, conference pape

    Global behaviour corresponding to the absolute instability of the rotating-disc boundary layer

    Get PDF
    A study is carried out of the linear global behaviour corresponding to the absolute instability of the rotating-disc boundary layer. It is based on direct numerical simulations of the complete linearized Navier–Stokes equations obtained with the novel velocity–vorticity method described in Davies & Carpenter (2001). As the equations are linear, they become separable with respect to the azimuthal coordinate, θ\theta. This permits us to simulate a single azimuthal mode. Impulse-like excitation is used throughout. This creates disturbances that take the form of wavepackets, initially containing a wide range of frequencies. When the real spatially inhomogeneous flow is approximated by a spatially homogeneous flow (the so-called parallel-flow approximation) the results ofthe simulations are fully in accordance with the theory of Lingwood (1995). If the flow parameters are such that her theory indicates convective behaviour the simulations clearly exhibit the same behaviour. And behaviour fully consistent with absolute instability is always found when the flow parameters lie within the theoretical absolutely unstable region. The numerical simulations of the actual inhomogeneous flow reproduce the behaviour seen in the experimental study of Lingwood (1996). In particular, there is close agreement between simulation and experiment for the ray paths traced out by the leading and trailing edges of the wavepackets. In absolutely unstable regions the short-term behaviour of the simulated disturbances exhibits strong temporal growth and upstream propagation. This is not sustained for longer times, however. The study suggests that convective behaviour eventually dominates at all the Reynolds numbers investigated, even for strongly absolutely unstable regions. Thus the absolute instability of the rotating-disc boundary layer does not produce a linear amplified global mode as observed in many other flows. Instead the absolute instability seems to be associated with transient temporal growth, much like an algebraically growing disturbance. There is no evidence of the absolute instability giving rise to a global oscillator. The maximum growth rates found for the simulated disturbances in the spatially inhomogeneous flow are determined by the convective components and are little different in the absolutely unstable cases from the purely convectively unstable ones. In addition to the study of the global behaviour for the usual rigid-walled rotating disc, we also investigated the effect of replacing an annular region of the disc surface with a compliant wall. It was found that the compliant annulus had the effect of suppressing the transient temporal growth in the inboard (i.e. upstream) absolutely unstable region. As time progressed the upstream influence of the compliant region became more extensive

    Approximating Data with weighted smoothing Splines

    Full text link
    Given a data set (t_i, y_i), i=1,..., n with the t_i in [0,1] non-parametric regression is concerned with the problem of specifying a suitable function f_n:[0,1] -> R such that the data can be reasonably approximated by the points (t_i, f_n(t_i)), i=1,..., n. If a data set exhibits large variations in local behaviour, for example large peaks as in spectroscopy data, then the method must be able to adapt to the local changes in smoothness. Whilst many methods are able to accomplish this they are less successful at adapting derivatives. In this paper we show how the goal of local adaptivity of the function and its first and second derivatives can be attained in a simple manner using weighted smoothing splines. A residual based concept of approximation is used which forces local adaptivity of the regression function together with a global regularization which makes the function as smooth as possible subject to the approximation constraints

    A three dimensional finite element model of wind effects upon higher harmonics of the internal tide.

    Get PDF
    A non-linear three dimensional unstructured grid model of the M2 tide in the shelf edge area off the west coast of Scotland is used to examine the spatial distribution of the M2 internal tide and its higher harmonics in the region. In addition the spatial variability of the tidally induced turbulent kinetic energy and associated mixing in the area are considered. Initial calculations involve only tidal forcing, although subsequent calculations are performed with up-welling and down-welling favourable winds in order to examine how these influence the tidal distribution (particularly the higher harmonics) and mixing in the region. Both short and long duration winds are used in these calculations. Tidal calculations show that there is significant small scale spatial variability particularly in the higher harmonics of the internal tide in the region. In addition turbulence energy and mixing exhibit appreciable spatial variability in regions of rapidly changing topography, with increased mixing occurring above seamounts. Wind effects significantly change the distribution of the M2 internal tide and its higher harmonics, with appreciable differences found between up- and down-welling winds, and long and short duration winds due to differences in mixing and the presence of wind induced flows. The implications for model validation, particularly in terms of energy transfer to higher harmonics, and mixing are briefly discussed
    corecore