1,410 research outputs found

    The spherical 2+p2+p spin glass model: an exactly solvable model for glass to spin-glass transition

    Full text link
    We present the full phase diagram of the spherical 2+p2+p spin glass model with p4p\geq 4. The main outcome is the presence of a new phase with both properties of Full Replica Symmetry Breaking (FRSB) phases of discrete models, e.g, the Sherrington-Kirkpatrick model, and those of One Replica Symmetry Breaking (1RSB). The phase, which separates a 1RSB phase from FRSB phase, is described by an order parameter function q(x)q(x) with a continuous part (FRSB) for x<mx<m and a discontinuous jump (1RSB) at x=mx=m. This phase has a finite complexity which leads to different dynamic and static properties.Comment: 5 pages, 2 figure

    Inherent Structures, Configurational Entropy and Slow Glassy Dynamics

    Full text link
    We give a short introduction to the inherent structure approach, with particular emphasis on the Stillinger and Weber decomposition, of glassy systems. We present some of the results obtained in the framework of spin-glass models and Lennard-Jones glasses. We discuss how to generalize the standard Stillinger and Weber approach by including the entropy of inherent structures. Finally we discuss why this approach is probably insufficient to describe the behavior of some kinetically constrained models.Comment: 16 pages, 8 figures, Contribution to the ESF SPHINX meeting `Glassy behaviour of kinetically constrained models' (Barcelona, March 22-25, 2001

    Frequency-domain study of relaxation in a spin glass model for the structural glass transition

    Full text link
    We have computed the time-dependent susceptibility for the finite-size mean-field Random Orthogonal model (ROM). We find that for temperatures above the mode-coupling temperature the imaginary part of the susceptibility χ(ν)\chi''(\nu) obeys the scaling forms proposed for glass-forming liquids. Furthermore, as the temperature is lowered the peak frequency of χ\chi'' decreases following a Vogel-Fulcher law with a critical temperature remarkably close to the known critical temperature TcT_c where the configurational entropy vanishes.Comment: 7 pages, 4 figures, epl LaTeX packag

    Replica symmetry breaking in long-range glass models without quenched disorder

    Full text link
    We discuss mean field theory of glasses without quenched disorder focusing on the justification of the replica approach to thermodynamics. We emphasize the assumptions implicit in this method and discuss how they can be verified. The formalism is applied to the long range Ising model with orthogonal coupling matrix. We find the one step replica-symmetry breaking solution and show that it is stable in the intermediate temperature range that includes the glass state but excludes very low temperatures. At very low temperatures this solution becomes unstable and this approach fails.Comment: 6 pages, 2 figure

    Characterization of a periodically driven chaotic dynamical system

    Full text link
    We discuss how to characterize the behavior of a chaotic dynamical system depending on a parameter that varies periodically in time. In particular, we study the predictability time, the correlations and the mean responses, by defining a local--in--time version of these quantities. In systems where the time scale related to the time periodic variation of the parameter is much larger than the ``internal'' time scale, one has that the local quantities strongly depend on the phase of the cycle. In this case, the standard global quantities can give misleading information.Comment: 15 pages, Revtex 2.0, 8 figures, included. All files packed with uufile

    The spherical 2+p spin glass model: an analytically solvable model with a glass-to-glass transition

    Full text link
    We present the detailed analysis of the spherical s+p spin glass model with two competing interactions: among p spins and among s spins. The most interesting case is the 2+p model with p > 3 for which a very rich phase diagram occurs, including, next to the paramagnetic and the glassy phase represented by the one step replica symmetry breaking ansatz typical of the spherical p-spin model, other two amorphous phases. Transitions between two contiguous phases can also be of different kind. The model can thus serve as mean-field representation of amorphous-amorphous transitions (or transitions between undercooled liquids of different structure). The model is analytically solvable everywhere in the phase space, even in the limit where the infinite replica symmetry breaking ansatz is required to yield a thermodynamically stable phase.Comment: 21 pages, 18 figure

    Activated processes and Inherent Structure dynamics of finite-size mean-field models for glasses

    Full text link
    We investigate the inherent structure (IS) dynamics of mean-field {\it finite-size} spin-glass models whose high-temperature dynamics is described in the thermodynamic limit by the schematic Mode Coupling Theory for super-cooled liquids. Near the threshold energy the dynamics is ruled by activated processes which induce a logarithmic slow relaxation. We show the presence of aging in both the IS correlation and integrated response functions and check the validity of the one-step replica symmetry breaking scenario in the presence of activated processes. Our work shows: 1) The violation of the fluctuation-dissipation theorem is given by the configurational entropy, 2) The intermediate time regime (log(t)N\log(t)\sim N) in mean-field theory automatically includes activated processes opening the way to analytically investigate activated processes by computing corrections beyond mean-field.Comment: 8 pages, 3 postscript figures, EPL format, improved versio

    Observable Dependent Quasi-Equilibrium in Slow Dynamics

    Full text link
    We present examples demonstrating that quasi-equilibrium fluctuation-dissipation behavior at short time differences is not a generic feature of systems with slow non-equilibrium dynamics. We analyze in detail the non-equilibrium fluctuation-dissipation ratio X(t,tw) associated with a defect-pair observable in the Glauber-Ising spin chain. It turns out that X1X \neq 1 throughout the short-time regime and in particular X(tw,tw) = 3/4 for twtw \to \infty. The analysis is extended to observables detecting defects at a finite distance from each other, where similar violations of quasi-equilibrium behaviour are found. We discuss our results in the context of metastable states, which suggests that a violation of short-time quasi-equilibrium behavior could occur in general glassy systems for appropriately chosen observables.Comment: 17 pages, 5 figures; substantially improved version of cond-mat/040571

    Random bond Ising chain in a transverse magnetic field: A finite-size scaling analysis

    Full text link
    We investigate the zero-temperature quantum phase transition of the random bond Ising chain in a transverse magnetic field. Its critical properties are identical to those of the McCoy-Wu model, which is a classical Ising model in two dimensions with layered disorder. The latter is studied via Monte Carlo simulations and transfer matrix calculations and the critical exponents are determined with a finite-size scaling analysis. The magnetization and susceptibility obey conventional rather than activated scaling. We observe that the order parameter-- and correlation function--probability distribution show a nontrivial scaling near the critical point which implies a hierarchy of critical exponents associated with the critical behavior of the generalized correlation lengths.Comment: RevTeX 13 pages + 4 figures (appended as uuencoded compressed tar-file), THP61-9

    Statistical Mechanics of Shell Models for 2D-Turbulence

    Full text link
    We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy.Comment: 25 pages + 9 figures, TeX dialect: RevTeX 3.
    corecore