288 research outputs found
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models
We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47–18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope(HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with T ≈ 8300 K, a radius of R ≈ 4.5 x 10^(14) cm (corresponding to an expansion velocity of ν ≈ 0.3c), and a bolometric luminosity of L_(bol) ≈ 5 x 10^(41) erg s^(−1). At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of ^(56)Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting "blue" component has M^(blue)_(ej) ≈ 0.01 M⊙ and ν^(blue)_(ej) ≈ 0.3 c, and the "red" component has M^(red)_(ej) ≈ 0.04 M⊙ and ν^(red)_(ej) ≈ 0.1 c. These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models
We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47–18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope(HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with T ≈ 8300 K, a radius of R ≈ 4.5 x 10^(14) cm (corresponding to an expansion velocity of ν ≈ 0.3c), and a bolometric luminosity of L_(bol) ≈ 5 x 10^(41) erg s^(−1). At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of ^(56)Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting "blue" component has M^(blue)_(ej) ≈ 0.01 M⊙ and ν^(blue)_(ej) ≈ 0.3 c, and the "red" component has M^(red)_(ej) ≈ 0.04 M⊙ and ν^(red)_(ej) ≈ 0.1 c. These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment
Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817
We present Spitzer Space Telescope 3.6 and 4.5 micron observations of the
binary neutron star merger GW170817 at 43, 74, and 264 days post-merger. Using
the final observation as a template, we uncover a source at the position of
GW170817 at 4.5 micron with a brightness of 22.9+/-0.3 AB mag at 43 days and
23.8+/-0.3 AB mag at 74 days (the uncertainty is dominated by systematics from
the image subtraction); no obvious source is detected at 3.6 micron to a
3-sigma limit of >23.3 AB mag in both epochs. The measured brightness is dimmer
by a factor of about 2-3 times compared to our previously published kilonova
model, which is based on UV, optical, and near-IR data at <30 days. However,
the observed fading rate and color (m_{3.6}-m_{4.5}> 0 AB mag) are consistent
with our model. We suggest that the discrepancy is likely due to a transition
to the nebular phase, or a reduced thermalization efficiency at such late time.
Using the Spitzer data as a guide, we briefly discuss the prospects of
observing future binary neutron star mergers with Spitzer (in LIGO/Virgo
Observing Run 3) and the James Webb Space Telescope (in LIGO/Virgo Observing
Run 4 and beyond).Comment: 6 pages, 2 figures, submitted to ApJ
A Decline in the X-ray through Radio Emission from GW170817 Continues to Support an Off-Axis Structured Jet
We present new observations of the binary neutron star merger GW170817 at
days post-merger, at radio (Karl G. Jansky Very Large
Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space
Telescope; HST) wavelengths. These observations provide the first evidence for
a turnover in the X-ray light curve, mirroring a decline in the radio emission
at significance. The radio-to-X-ray spectral energy
distribution exhibits no evolution into the declining phase. Our full
multi-wavelength dataset is consistent with the predicted behavior of our
previously published models of a successful structured jet expanding into a
low-density circumbinary medium, but pure cocoon models with a choked jet
cannot be ruled out. If future observations continue to track our predictions,
we expect that the radio and X-ray emission will remain detectable until days post-merger.Comment: Accepted to ApJL. Updated version includes new VLA observations
extending through 2018 June
The Binary Neutron Star event LIGO/VIRGO GW170817 a hundred and sixty days after merger: synchrotron emission across the electromagnetic spectrum
We report deep Chandra, HST and VLA observations of the binary neutron star
event GW170817 at d after merger. These observations show that GW170817
has been steadily brightening with time and might have now reached its peak,
and constrain the emission process as non-thermal synchrotron emission where
the cooling frequency is above the X-ray band and the synchrotron
frequency is below the radio band. The very simple power-law spectrum
extending for eight orders of magnitude in frequency enables the most precise
measurement of the index of the distribution of non-thermal relativistic
electrons accelerated by a shock launched by a
NS-NS merger to date. We find , which indicates that radiation
from ejecta with dominates the observed emission. While
constraining the nature of the emission process, these observations do
\emph{not} constrain the nature of the relativistic ejecta. We employ
simulations of explosive outflows launched in NS ejecta clouds to show that the
spectral and temporal evolution of the non-thermal emission from GW170817 is
consistent with both emission from radially stratified quasi-spherical ejecta
traveling at mildly relativistic speeds, \emph{and} emission from off-axis
collimated ejecta characterized by a narrow cone of ultra-relativistic material
with slower wings extending to larger angles. In the latter scenario, GW170817
harbored a normal SGRB directed away from our line of sight. Observations at
days are unlikely to settle the debate as in both scenarios the
observed emission is effectively dominated by radiation from mildly
relativistic material.Comment: Updated with the latest VLA and Chandra dat
Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817
The luminosity distance measurement of GW170817 derived from GW analysis in
Abbott et al. 2017 (here, A17:H0) is highly correlated with the measured
inclination of the NS-NS system. To improve the precision of the distance
measurement, we attempt to constrain the inclination by modeling the broad-band
X-ray-to-radio emission from GW170817, which is dominated by the interaction of
the jet with the environment. We update our previous analysis and we consider
the radio and X-ray data obtained at days since merger. We find that the
afterglow emission from GW170817 is consistent with an off-axis relativistic
jet with energy
propagating into an environment with density , with preference for wider jets (opening angle
deg). For these jets, our modeling indicates an off-axis angle deg. We combine our constraints on with the
joint distance-inclination constraint from LIGO. Using the same
km/sec peculiar velocity uncertainty assumed in A17:H0 but with an inclination
constraint from the afterglow data, we get a value of \mbox{km/s/Mpc}, which is higher than the value of
\mbox{km/s/Mpc} found in A17:H0. Further,
using a more realistic peculiar velocity uncertainty of 250 km/sec derived from
previous work, we find km/s/Mpc for H0 from
this system. We note that this is in modestly better agreement with the local
distance ladder than the Planck CMB, though a significant such discrimination
will require such events. Future measurements at days of the
X-ray and radio emission will lead to tighter constraints.Comment: Submitted to ApJL. Comments Welcome. Revised uncertainties in v
- …