288 research outputs found

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

    Get PDF
    We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47–18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope(HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with T ≈ 8300 K, a radius of R ≈ 4.5 x 10^(14) cm (corresponding to an expansion velocity of ν ≈ 0.3c), and a bolometric luminosity of L_(bol) ≈ 5 x 10^(41) erg s^(−1). At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of ^(56)Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting "blue" component has M^(blue)_(ej) ≈ 0.01 M⊙ and ν^(blue)_(ej) ≈ 0.3 c, and the "red" component has M^(red)_(ej) ≈ 0.04 M⊙ and ν^(red)_(ej) ≈ 0.1 c. These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

    Get PDF
    We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47–18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope(HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with T ≈ 8300 K, a radius of R ≈ 4.5 x 10^(14) cm (corresponding to an expansion velocity of ν ≈ 0.3c), and a bolometric luminosity of L_(bol) ≈ 5 x 10^(41) erg s^(−1). At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of ^(56)Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting "blue" component has M^(blue)_(ej) ≈ 0.01 M⊙ and ν^(blue)_(ej) ≈ 0.3 c, and the "red" component has M^(red)_(ej) ≈ 0.04 M⊙ and ν^(red)_(ej) ≈ 0.1 c. These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment

    Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817

    Full text link
    We present Spitzer Space Telescope 3.6 and 4.5 micron observations of the binary neutron star merger GW170817 at 43, 74, and 264 days post-merger. Using the final observation as a template, we uncover a source at the position of GW170817 at 4.5 micron with a brightness of 22.9+/-0.3 AB mag at 43 days and 23.8+/-0.3 AB mag at 74 days (the uncertainty is dominated by systematics from the image subtraction); no obvious source is detected at 3.6 micron to a 3-sigma limit of >23.3 AB mag in both epochs. The measured brightness is dimmer by a factor of about 2-3 times compared to our previously published kilonova model, which is based on UV, optical, and near-IR data at <30 days. However, the observed fading rate and color (m_{3.6}-m_{4.5}> 0 AB mag) are consistent with our model. We suggest that the discrepancy is likely due to a transition to the nebular phase, or a reduced thermalization efficiency at such late time. Using the Spitzer data as a guide, we briefly discuss the prospects of observing future binary neutron star mergers with Spitzer (in LIGO/Virgo Observing Run 3) and the James Webb Space Telescope (in LIGO/Virgo Observing Run 4 and beyond).Comment: 6 pages, 2 figures, submitted to ApJ

    A Decline in the X-ray through Radio Emission from GW170817 Continues to Support an Off-Axis Structured Jet

    Full text link
    We present new observations of the binary neutron star merger GW170817 at Δt220290\Delta t\approx 220-290 days post-merger, at radio (Karl G. Jansky Very Large Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space Telescope; HST) wavelengths. These observations provide the first evidence for a turnover in the X-ray light curve, mirroring a decline in the radio emission at 5σ\gtrsim5\sigma significance. The radio-to-X-ray spectral energy distribution exhibits no evolution into the declining phase. Our full multi-wavelength dataset is consistent with the predicted behavior of our previously published models of a successful structured jet expanding into a low-density circumbinary medium, but pure cocoon models with a choked jet cannot be ruled out. If future observations continue to track our predictions, we expect that the radio and X-ray emission will remain detectable until 1000\sim 1000 days post-merger.Comment: Accepted to ApJL. Updated version includes new VLA observations extending through 2018 June

    The Binary Neutron Star event LIGO/VIRGO GW170817 a hundred and sixty days after merger: synchrotron emission across the electromagnetic spectrum

    Full text link
    We report deep Chandra, HST and VLA observations of the binary neutron star event GW170817 at t<160t<160 d after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the emission process as non-thermal synchrotron emission where the cooling frequency νc\nu_c is above the X-ray band and the synchrotron frequency νm\nu_m is below the radio band. The very simple power-law spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index pp of the distribution of non-thermal relativistic electrons N(γ)γpN(\gamma)\propto \gamma^{-p} accelerated by a shock launched by a NS-NS merger to date. We find p=2.17±0.01p=2.17\pm0.01, which indicates that radiation from ejecta with Γ310\Gamma\sim3-10 dominates the observed emission. While constraining the nature of the emission process, these observations do \emph{not} constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, \emph{and} emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal SGRB directed away from our line of sight. Observations at t200t\le 200 days are unlikely to settle the debate as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.Comment: Updated with the latest VLA and Chandra dat

    Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817

    Full text link
    The luminosity distance measurement of GW170817 derived from GW analysis in Abbott et al. 2017 (here, A17:H0) is highly correlated with the measured inclination of the NS-NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broad-band X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t<40t<40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy 1048erg<Ek3×1050erg10^{48}\,\rm{erg}<E_{k}\le 3\times 10^{50} \,\rm{erg} propagating into an environment with density n102104cm3n\sim10^{-2}-10^{-4} \,\rm{cm^{-3}}, with preference for wider jets (opening angle θj=15\theta_j=15 deg). For these jets, our modeling indicates an off-axis angle θobs2550\theta_{\rm obs}\sim25-50 deg. We combine our constraints on θobs\theta_{\rm obs} with the joint distance-inclination constraint from LIGO. Using the same 170\sim 170 km/sec peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of H0=H_0=74.0±11.57.574.0 \pm \frac{11.5}{7.5} \mbox{km/s/Mpc}, which is higher than the value of H0=H_0=70.0±12.08.070.0 \pm \frac{12.0}{8.0} \mbox{km/s/Mpc} found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km/sec derived from previous work, we find H0=H_0=75.5±11.69.675.5 \pm \frac{11.6}{9.6} km/s/Mpc for H0 from this system. We note that this is in modestly better agreement with the local distance ladder than the Planck CMB, though a significant such discrimination will require 50\sim 50 such events. Future measurements at t>100t>100 days of the X-ray and radio emission will lead to tighter constraints.Comment: Submitted to ApJL. Comments Welcome. Revised uncertainties in v
    corecore