4 research outputs found

    The effect of repeated washing of long-lasting insecticide-treated nets (LLINs) on the feeding success and survival rates of Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide-treated nets protect users from mosquito bites, thereby preventing transmissions of mosquito borne pathogens. Repeated washing of nets removes insecticide on the netting rendering them ineffective within a short period. Long-lasting insecticide-treated nets (LLINs) offer longer time protection against such bites because they are more wash resistant, and are preferred to conventionally treated nets. However, there is limited information on the effect of repeated washing of LLINs on the feeding success and survival of wild malaria vectors.</p> <p>Methods</p> <p>The current study evaluated the effect of repeated washing of four brands of LLINs on the feeding success and survival rates of <it>Anopheles gambiae </it>sl reared from wild strains. In this study, two- to five-day old F1s, reared from gravid mosquitoes collected from an area with a high coverage of LLINs were offered blood meals through protective barriers of the above LLINs. Mosquitoes were exposed for a period of 10 minutes each time. Nets were tested unwashed and subsequently after every 5<sup>th </sup>through wash 15. After exposure mosquitoes were sorted out according to their feeding status. They were then held under normal laboratory conditions for 24 hours and mortality was scored in both fed and unfed.</p> <p>Results</p> <p>It was observed that mosquitoes did not feed through a barrier of unwashed LLINs. However, the feeding success and survival rates increased with successive number of washes and were also net brand dependant. After 15 washes, 49% of vectors succeeded to feed through a protective barrier of PermaNet 2.0 and 50% of the fed died after 24 hrs while after the same number of washes 60% of vectors succeeded to feed through Olyset brand of LLINs and all of them survived. In general, more mosquitoes survived after feeding through Olyset compared to the other four brands that were evaluated. When efficacy of individual LLINs was compared by a t-test analysis to a conventionally treated net, the results were not significantly different statistically for Olyset (<it>p = </it>0.239) and NetProtect (TNT) (<it>p = </it>0.135). However, the results were highly significant when comparison was made with PermaNet and Interceptor (BASF); <it>p </it>values 0.015 and 0.025 respectively.</p> <p>Conclusion</p> <p>The result of this study shows that repeated washing of LLINs at short time intervals using local washing methods may render them infective within a short time in preventing local vectors from feeding.</p

    Spatial targeted vector control in the highlands of Burundi and its impact on malaria transmission

    Get PDF
    BACKGROUND: Prevention of malaria epidemics is a priority for African countries. The 2000 malaria epidemic in Burundi prompted the government to implement measures for preventing future outbreaks. Case management with artemisinin-based combination therapy and malaria surveillance were nationally improved. A vector control programme was initiated in one of the most affected highland provinces. The focal distribution of malaria vectors in the highlands was the starting point for designing a targeted vector control strategy. The objective of this study was to present the results of this strategy on malaria transmission in an African highland region. METHODS: In Karuzi, in 2002-2005, vector control activities combining indoor residual spraying and long-lasting insecticidal nets were implemented. The interventions were done before the expected malaria transmission period and targeted the valleys between hills, with the expectation that this would also protect the populations living at higher altitudes. The impact on the Anopheles population and on malaria transmission was determined by nine cross-sectional surveys carried out at regular intervals throughout the study period. RESULTS: Anopheles gambiae s.l. and Anopheles funestus represented 95% of the collected anopheline species. In the valleys, where the vector control activities were implemented, Anopheles density was reduced by 82% (95% CI: 69-90). Similarly, transmission was decreased by 90% (95% CI: 63%-97%, p = 0.001). In the sprayed valleys, Anopheles density was further reduced by 79.5% (95% CI: 51.7-91.3, p < 0.001) in the houses with nets as compared to houses without them. No significant impact on vector density and malaria transmission was observed in the hill tops. However, the intervention focused on the high risk areas near the valley floor, where 93% of the vectors are found and 90% of the transmission occurs. CONCLUSION: Spatial targeted vector control effectively reduced Anopheles density and transmission in this highland district. Bed nets have an additional effect on Anopheles density though this did not translate in an additional impact on transmission. Though no impact was observed in the hilltops, the programme successfully covered the areas most at risk. Such a targeted strategy could prevent the emergence and spread of an epidemic from these high risk foci

    Theoretical analysis of a friction stir welded panel in comparison with the baseline version

    No full text
    The use of Friction Stir Welding (FSW) in the aerospace industry is a promising technology that could allow the increased automation of the process with consequent reduction of the overall costs. This paper will study four different options for the application of FSW to the upper panel of the aileron for the C27J cargo plane. A theoretical analysis of four different configurations will show the dramatic reductions of costs related to the use of FSW instead of riveting and the possible advantages in terms of weight reductions connected to it

    Adaptation of zebrafish gills after aluminium exposure

    No full text
    Aluminum is considered a dangerous pollutant, especially for aquatic organisms, since the phenomenon of acid rain increases its availability in water bodies. This study aims to obtain preliminary data on the effects of aluminum exposure on the fish gills, the first organ interacting with the metal in water bodies. Zebrafish, a widely used species in ecotoxicological studies, has been chosen as an experimental model. Adult specimens were exposed to 11 mg/L for 10, 15, and 20 days. We evaluated the in vivo oxygen consumption and tail beats, as well as gill's homogenate COX activity, ROS content, relative ability to scavenge ABTS, antioxidant enzyme activity, oxidative damage to lipids, and in vitro susceptibility to oxidative stress was evaluated. The results indicate that aluminum alters both animals' wellness and oxidative state, disrupting redox homeostasis and impairing oxygen consumption and spontaneous activity. However, after 20 days of exposure the antioxidant system efficiency increases, suggesting an adaptive mechanism that makes the animal less susceptible to aluminum-induced oxidative stress. Furthermore, after 20 days of exposure, oxygen consumption is reduced, while the tail beats increase, suggesting the onset of anaerobic metabolism as an adaptive mechanism. Overall, the results provide an essential starting point for assessing the toxicity induced by aluminum on the gills of aquatic organisms, the effects of which are still poorly understood
    corecore