3,597 research outputs found

    ALP Conversion and the Soft X-ray Excess in the Outskirts of the Coma Cluster

    Full text link
    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP to photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived.Comment: 21 pages, 7 figure

    A 3.55 keV line from DMaγ\text{DM}\rightarrow a \rightarrow \gamma: predictions for cool-core and non-cool-core clusters

    Full text link
    We further study a scenario in which a 3.55 keV X-ray line arises from decay of dark matter to an axion-like particle (ALP), that subsequently converts to a photon in astrophysical magnetic fields. We perform numerical simulations of Gaussian random magnetic fields with radial scaling of the magnetic field magnitude with the electron density, for both cool-core `Perseus' and non-cool-core `Coma' electron density profiles. Using these, we quantitatively study the resulting signal strength and morphology for cool-core and non-cool-core clusters. Our study includes the effects of fields of view that cover only the central part of the cluster, the effects of offset pointings on the radial decline of signal strength and the effects of dividing clusters into annuli. We find good agreement with current data and make predictions for future analyses and observations.Comment: 14 pages, 6 figure

    Moduli and multi-field inflation

    Full text link
    Moduli with flat or run-away classical potentials are generic in theories based on supersymmetry and extra dimensions. They mix between themselves and with matter fields in kinetic terms and in the nonperturbative superpotentials. As the result, interesting structure appears in the scalar potential which helps to stabilise and trap moduli and leads to multi-field inflation. The new and attractive feature of multi-inflationary setup are isocurvature perturbations which can modify in an interesting way the final spectrum of primordial fluctuations resulting from inflation.Comment: 8 pages, 5 figures, based on talks given at CTP Symposium on Supersymmetry at LHC (Cairo, March 11-14 2007) and String Phenomenology 2007 (Frascati, June 4-8 2007
    corecore