1,619 research outputs found

    Strong wave-mean-flow coupling in baroclinic acoustic streaming

    Full text link
    The interaction of an acoustic wave with a stratified fluid can drive strong streaming flows owing to the baroclinic production of fluctuating vorticity, as recently demonstrated by Chini et al. (J. Fluid Mech., 744, 2014, pp. 329). In the present investigation, a set of wave/mean-flow interaction equations is derived that governs the coupled dynamics of a standing acoustic wave mode of characteristic (small) amplitude {\epsilon} and the streaming flow it drives in a thin channel with walls maintained at differing temperatures. Unlike classical Rayleigh streaming, the resulting mean flow arises at O({\epsilon}) rather than at O({\epsilon^2}). Consequently, fully two-way coupling between the waves and the mean flow is possible: the streaming is sufficiently strong to induce O(1) rearrangements of the imposed background temperature and density fields, which modifies the spatial structure and frequency of the acoustic mode on the streaming time scale. A novel Wentzel-Kramers-Brillouin-Jeffreys analysis is developed to average over the fast wave dynamics, enabling the coupled system to be integrated strictly on the slow time scale of the streaming flow. Analytical solutions of the reduced system are derived for weak wave forcing and are shown to reproduce results from prior direct numerical simulations (DNS) of the compressible Navier Stokes and heat equations with remarkable accuracy. Moreover, numerical simulations of the reduced system are performed in the regime of strong wave mean flow coupling for a fraction of the computational cost of the corresponding DNS. These simulations shed light on the potential for baroclinic acoustic streaming to be used as an effective means to enhance heat transfer.Comment: 29 pages, 7 figure

    Contribution of Extragalactic Infrared Sources to CMB Foreground Anisotropy

    Full text link
    We estimate the level of confusion to Cosmic Microwave Background anisotropy measurements caused by extragalactic infrared sources. CMB anisotropy observations at high resolution and high frequencies are especially sensitive to this foreground. We use data from the COBE satellite to generate a Galactic emission spectrum covering mm and sub-mm wavelengths. Using this spectrum as a template, we predict the microwave emission of the 5319 brightest infrared galaxies seen by IRAS. We simulate skymaps over the relevant range of frequencies (30-900 GHz) and instrument resolutions (10'-10 degrees Full Width Half Max). Analysis of the temperature anisotropy of these skymaps shows that a reasonable observational window is available for CMB anisotropy measurements.Comment: 14 pages (LaTex source), 3 PostScript figures. Final version, to appear in ApJLetters May 1. Expanded discussion of systematic error

    Cyclic ADP-ribose metabolism in rat kidney: High capacity for synthesis in glomeruli

    Get PDF
    Cyclic ADP-ribose metabolism in rat kidney: High capacity for synthesis in glomeruli. Recent discovery of cyclic ADP-ribose (cADPR) as an agent that triggers Ca2+ release from intracellular stores, through ryanodine receptor channel, is an important new development in the investigation of intracellular signaling mechanisms. We determined the capacity of kidney and its components for synthesis of cADPR from β-NAD, that is catalyzed by enzyme ADP-ribosyl cyclase, and enzymatic inactivation that is catalyzed by cADPR-glycohydrolase. Little or no activity of ADP-ribosyl cyclase was found in extracts from the whole rat kidney, renal cortex, outer and inner medulla. On the other hand, incubation of β-NAD with similar extracts from rat liver, spleen, heart, and brain resulted in biosynthesis of cADPR. In addition, extracts from suspension of proximal tubules or microdissected proximal convoluted tubules virtually lacked ADP-ribosyl cyclase activity. In sharp contrast to proximal tubules and cortex, extracts from glomeruli had high ADP-ribosyl cyclase activity, similar to that found in non-renal tissues. Authenticity of cADPR biosynthesized in glomeruli was documented by several criteria such as HPLC analysis, effect of inhibitors and homologous desensitization of Ca2+-release bioassay. On the other hand, the activity of cADPR-glycohydrolase was similar in extracts from glomeruli and in extracts from kidney cortex. Mesangial cells and vascular smooth muscle cells grown in primary culture displayed considerable ADPR-ribose cyclase activity. Our results show that extracts from glomeruli, unlike extracts from renal tissue zones and proximal tubules, have a singularly high capacity for synthesis of cADPR. We surmise that cADPR-triggered Ca2+-releasing system can serve as an intracellular signaling pathway that may be operant in regulations of glomerular cell functions

    HD 152246 - a new high-mass triple system and its basic properties

    Full text link
    Analyses of multi-epoch, high-resolution (R ~ 50.000) optical spectra of the O-type star HD 152246 (O9 IV according to the most recent classification), complemented by a limited number of earlier published radial velocities, led to the finding that the object is a hierarchical triple system, where a close inner pair (Ba-Bb) with a slightly eccentric orbit (e = 0.11) and a period of 6.0049 days revolves in a 470-day highly eccentric orbit (e = 0.865) with another massive and brighter component A. The mass ratio of the inner system must be low since we were unable to find any traces of the secondary spectrum. The mass ratio A/(Ba+Bb) is 0.89. The outer system has recently been resolved using long-baseline interferometry on three occasions. The interferometry confirms the spectroscopic results and specifies elements of the system. Our orbital solutions, including the combined radial-velocity and interferometric solution indicate an orbital inclination of the outer orbit of 112{\deg} and stellar masses of 20.4 and 22.8 solar masses. We also disentangled the spectra of components A and Ba and compare them to synthetic spectra from two independent programmes, TLUSTY and FASTWIND. In either case, the fit was not satisfactory and we postpone a better determination of the system properties for a future study, after obtaining observations during the periastron passage of the outer orbit (the nearest chance being March 2015). For the moment, we can only conclude that component A is an O9 IV star with v*sin(i) = 210 +\- 10 km/s and effective temperature of 33000 +\- 500 K, while component Ba is an O9 V object with v*sin(i) = 65 +/- 3 km/s and T_eff = 33600 +\- 600 K.Comment: 9 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Benard convection

    Get PDF
    An alternative computational procedure for numerically solving a class of variational problems arising from rigorous upper-bound analysis of forced-dissipative infinite-dimensional nonlinear dynamical systems, including the Navier-Stokes and Oberbeck-Boussinesq equations, is analyzed and applied to Rayleigh-Benard convection. A proof that the only steady state to which this numerical algorithm can converge is the required global optimal of the relevant variational problem is given for three canonical flow configurations. In contrast with most other numerical schemes for computing the optimal bounds on transported quantities (e.g., heat or momentum) within the "background field" variational framework, which employ variants of Newton's method and hence require very accurate initial iterates, the new computational method is easy to implement and, crucially, does not require numerical continuation. The algorithm is used to determine the optimal background-method bound on the heat transport enhancement factor, i.e., the Nusselt number (Nu), as a function of the Rayleigh number (Ra), Prandtl number (Pr), and domain aspect ratio L in two-dimensional Rayleigh-Benard convection between stress-free isothermal boundaries (Rayleigh's original 1916 model of convection). The result of the computation is significant because analyses, laboratory experiments, and numerical simulations have suggested a range of exponents alpha and beta in the presumed Nu similar to (PrRa beta)-Ra-alpha scaling relation. The computations clearly show that for Ra <= 10(10) at fixed L = 2 root 2, Nu <= 0.106Pr(0)Ra(5/12), which indicates that molecular transport cannot generally be neglected in the "ultimate" high-Ra regime.NSF DMS-0928098 DMS-1515161 DMS-0927587 PHY-1205219Simons FoundationNSFONRInstitute for Computational Engineering and Sciences (ICES

    Regimes of stratified turbulence at low Prandtl number

    Full text link
    Quantifying transport by strongly stratified turbulence in low Prandtl number (PrPr) fluids is critically important for the development of better models for the structure and evolution of stellar interiors. Motivated by recent numerical simulations showing strongly anisotropic flows suggestive of scale-separated dynamics, we perform a multiscale asymptotic analysis of the governing equations. We find that, in all cases, the resulting slow-fast system naturally takes a quasilinear form. Our analysis also reveals the existence of several distinct dynamical regimes depending on the emergent buoyancy Reynolds and P\'eclet numbers, Reb=α2ReRe_b = \alpha^2 Re and Peb=PrRebPe_b = Pr Re_b, respectively, where α\alpha is the aspect ratio of the large-scale turbulent flow structures, and ReRe is the outer scale Reynolds number. Scaling relationships relating the aspect ratio, the characteristic vertical velocity, and the strength of the stratification (measured by the Froude number FrFr) naturally emerge from the analysis. When PebαPe_b \ll \alpha, the dynamics at all scales is dominated by buoyancy diffusion, and our results recover the scaling laws empirically obtained from direct numerical simulations by Cope et al. (2020). For PebO(1)Pe_b \ge O(1), diffusion is negligible (or at least subdominant) at all scales and our results are consistent with those of Chini et al. (2022) for strongly stratified geophysical turbulence at Pr=O(1)Pr = O(1).Finally, we have identified a new regime for αPeb1\alpha \ll Pe_b \ll 1, in which slow, large scales are diffusive while fast, small scales are not. We conclude by presenting a map of parameter space that clearly indicates the transitions between isotropic turbulence, non-diffusive stratified turbulence, diffusive stratified turbulence and viscously-dominated flows.Comment: 25 pages, 1 figur

    Variability survey in the CoRoT SRa01 field: Implications of eclipsing binary distribution on cluster formation in NGC 2264

    Full text link
    Time-series photometry of the CoRoT field SRa01 was carried out with the Berlin Exoplanet Search Telescope II (BEST II) in 2008/2009. A total of 1,161 variable stars were detected, of which 241 were previously known and 920 are newly found. Several new, variable young stellar objects have been discovered. The study of the spatial distribution of eclipsing binaries revealed the higher relative frequency of Algols toward the center of the young open cluster NGC 2264. In general Algol frequency obeys an isotropic distribution of their angular momentum vectors, except inside the cluster, where a specific orientation of the inclinations is the case. We suggest that we see the orbital plane of the binaries almost edge-on.Comment: 18 pages, 8 figures, accepted for publication in Ap
    corecore