660 research outputs found

    Rapid Syphilis Tests as Catalysts for Health Systems Strengthening: A Case Study from Peru.

    Get PDF
    OBJECTIVES: Untreated maternal syphilis leads to adverse pregnancy outcomes. The use of point of care tests (POCT) offers an opportunity to improve screening coverage for syphilis and other aspects of health systems. Our objective is to present the experience of the introduction of POCT for syphilis in Peru and describe how new technology can catalyze health system strengthening. METHODS: The study was implemented from September 2009-November 2010 to assess the feasibility of the use of a POCT for syphilis for screening pregnant women in Lima, Peru. Outcomes measured included access to syphilis screening, treatment coverage, partner treatment, effect on patient flow and service efficiency, acceptability among providers and patients, and sustainability. RESULTS: Before the introduction of POCT, a pregnant woman needed 6 visits to the health center in 27 days before she received her syphilis result. We trained 604 health providers and implemented the POCT for syphilis as the "two for one strategy", offering with one finger stick both syphilis and HIV testing. Implementation of the POCT resulted in testing and treatment on the first visit. Screening and treatment coverages for syphilis improved significantly compared with the previous year. Implementation of POCT has been scaled up nationally since the study ended, and coverages for screening, treatment and partner treatment have remained over 92%. CONCLUSIONS: Implementation of POCT for syphilis proved feasible and acceptable, and led to improvement in several aspects of health services. For the process to be effective we highlight the importance of: (1) engaging the authorities; (2) dissipating tensions between providers and identifying champions; (3) training according to the needs; (4) providing monitoring, supervision, support and recognition; (5) sharing results and discussing actions together; (6) consulting and obtaining feedback from users; and (7) integrating with other services such as with rapid HIV testing

    Alkylation of methyl linoleate with propene in ionic liquids in the presence of metal salts

    Get PDF
    Vegetable oils and fatty acid esters are suitable precursor molecules for the production of a variety of bio-based products and materials, such as paints and coatings, plastics, soaps, lubricants, cosmetics, pharmaceuticals, printing inks, surfactants, and biofuels. Here, we report the possibility of using Lewis acidic ionic liquids (ILs) to obtain polyunsaturated ester dimerization-oligomerization and/or, in the presence of another terminal alkene (propene), co-polymerization. In particular, we have tested the Lewis acidic mixtures arising from the addition of a proper amount of GaCl3 (X > 0.5) to two chloride-based (1-butyl-3-methylimidazolium chloride, [bmim]Cl, and 1-butylisoquinolium chloride, [BuIsoq]Cl) or by dissolution of a smaller amount of Al(Tf2N)3 (X = 0.1) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. On the basis of product distribution studies, [bmim][Tf2N]/Al(Tf2N)3 appears the most suitable medium in which methyl linoleate alkylation with propene can compete with methyl linoleate or propene oligomerization

    Persistent currents in diffusive metallic cavities: Large values and anomalous scaling with disorder

    Full text link
    The effect of disorder on confined metallic cavities with an Aharonov-Bohm flux line is addressed. We find that, even deep in the diffusive regime, large values of persistent currents may arise for a wide variety of geometries. We present numerical results supporting an anomalous scaling law of the average typical current with the strength of disorder ww, wγ \sim w^{- \gamma} with γ<2\gamma < 2. This is contrasted with previously reported results obtained for cylindrical samples where a scaling w2 \sim w^{-2} has been found. Possible links to, up to date, unexplained experimental data are finally discussed.Comment: 5 pages, 4 figure

    Capacitance spectroscopy in quantum dots: Addition spectra and decrease of tunneling rates

    Full text link
    A theoretical study of single electron capacitance spectroscopy in quantum dots is presented. Exact diagonalizations and the unrestricted Hartree-Fock approximation have been used to shed light over some of the unresolved aspects. The addition spectra of up to 15 electrons is obtained and compared with the experiment. We show evidence for understanding the decrease of the single electron tunneling rates in terms of the behavior of the spectral weight function. (To appear in Phys. Rev. B (Rapid Comm.))Comment: 10 pages, Revtex, hard copy or PostScript Figures upon request on [email protected]

    Chiral biobased ionic liquids with cations or anions including bile acid building blocks as chiral selectors in voltammetry

    Get PDF
    Chiral ionic liquids (CILs), or ionic liquids (ILs) with chiral additives, are very attractive chiral media for enantioselective electroanalysis, on account of their high chiral structural order at the electrochemical interphase. A family of molecular salts with CIL properties is now introduced, based on the chiral steroid building block of deoxycholic acid implemented either in the anion or cation. Testing them as chiral additives in a commercial achiral IL, they enable voltammetric discrimination of the enantiomers of a model chiral probe on disposable screen-printed electrodes in terms of peak potential differences, which is the most desirable transduction mode of the enantiorecognition event. The probe enantiomer sequence is the same for all selectors, consistent with their sharing the same chiral building block configuration. This proof-of-concept widens the application fields of bile acid derivatives as chiral selectors, while also enriching the still very few CIL families so far explored for applications in chiral electroanalysis

    Residual conductance of correlated one-dimensional nanosystems: A numerical approach

    Full text link
    We study a method to determine the residual conductance of a correlated system by means of the ground-state properties of a large ring composed of the system itself and a long non-interacting lead. The transmission probability through the interacting region and thus its residual conductance is deduced from the persistent current induced by a flux threading the ring. Density Matrix Renormalization Group techniques are employed to obtain numerical results for one-dimensional systems of interacting spinless fermions. As the flux dependence of the persistent current for such a system demonstrates, the interacting system coupled to an infinite non-interacting lead behaves as a non-interacting scatterer, but with an interaction dependent elastic transmission coefficient. The scaling to large lead sizes is discussed in detail as it constitutes a crucial step in determining the conductance. Furthermore, the method, which so far had been used at half filling, is extended to arbitrary filling and also applied to disordered interacting systems, where it is found that repulsive interaction can favor transport.Comment: 14 pages, 10 EPS figure

    Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring

    Full text link
    The persistent current through a quantum dot inserted in a mesoscopic ring of length L is studied. A cluster representing the dot and its vicinity is exactly diagonalized and embedded into the rest of the ring. The Kondo resonance provides a new channel for the current to flow. It is shown that due to scaling properties, the persistent current at the Kondo regime is enhanced relative to the current flowing either when the dot is at resonance or along a perfect ring of same length. In the Kondo regime the current scales as L1/2L^{-1/2}, unlike the L1L^{-1} scaling of a perfect ring. We discuss the possibility of detection of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure

    One- and many-body effects on mirages in quantum corrals

    Full text link
    Recent interesting experiments used scanning tunneling microscopy to study systems involving Kondo impurities in quantum corrals assembled on Cu or noble metal surfaces. The solution of the two-dimensional one-particle Schrodinger equation in a hard wall corral without impurity is useful to predict the conditions under which the Kondo effect can be projected to a remote location (the quantum mirage). To model a soft circular corral, we solve this equation under the potential W*delta(r-r0), where r is the distance to the center of the corral and r0 its radius. We expand the Green's function of electron surface states Gs0 for r<r0 as a discrete sum of contributions from single poles at energies epsilon_i-I*delta_i. The imaginary part delta_i is the half-width of the resonance produced by the soft confining potential, and turns out to be a simple increasing function of epsilon_i. In presence of an impurity, we solve the Anderson model at arbitrary temperatures using the resulting expression for Gs0 and perturbation theory up to second order in the Coulomb repulsion U. We calculate the resulting change in the differential conductance Delta dI/dV as a function of voltage and space, in circular and elliptical corrals, for different conditions, including those corresponding to recent experiments. The main features are reproduced. The role of the direct hybridization between impurity and bulk, the confinement potential, the size of the corral and temperature on the intensity of the mirage are analyzed. We also calculate spin-spin correlation functions.Comment: 13 pages, 12 figures, accepted for publication in Phys. Rev. B. Calculations of spin correlations within an additional approximation adde

    Disorder Induced Ferromagnetism in Restricted Geometries

    Full text link
    We study the influence of on-site disorder on the magnetic properties of the ground state of the infinite UU Hubbard model. We find that for one dimensional systems disorder has no influence, while for two dimensional systems disorder enhances the spin polarization of the system. The tendency of disorder to enhance magnetism in the ground state may be relevant to recent experimental observations of spin polarized ground states in quantum dots and small metallic grains.Comment: 4 pages, 4 figure

    Effective-field-theory approach to persistent currents

    Full text link
    Using an effective-field-theory (nonlinear sigma model) description of interacting electrons in a disordered metal ring enclosing magnetic flux, we calculate the moments of the persistent current distribution, in terms of interacting Goldstone modes (diffusons and cooperons). At the lowest or Gaussian order we reproduce well-known results for the average current and its variance that were originally obtained using diagrammatic perturbation theory. At this level of approximation the current distribution can be shown to be strictly Gaussian. The nonlinear sigma model provides a systematic way of calculating higher-order contributions to the current moments. An explicit calculation for the average current of the first term beyond Gaussian order shows that it is small compared to the Gaussian result; an order-of-magnitude estimation indicates that the same is true for all higher-order contributions to the average current and its variance. We therefore conclude that the experimentally observed magnitude of persistent currents cannot be explained in terms of interacting diffusons and cooperons.Comment: 12 pages, no figures, final version as publishe
    corecore