7,410 research outputs found
Learning activation functions from data using cubic spline interpolation
Neural networks require a careful design in order to perform properly on a
given task. In particular, selecting a good activation function (possibly in a
data-dependent fashion) is a crucial step, which remains an open problem in the
research community. Despite a large amount of investigations, most current
implementations simply select one fixed function from a small set of
candidates, which is not adapted during training, and is shared among all
neurons throughout the different layers. However, neither two of these
assumptions can be supposed optimal in practice. In this paper, we present a
principled way to have data-dependent adaptation of the activation functions,
which is performed independently for each neuron. This is achieved by
leveraging over past and present advances on cubic spline interpolation,
allowing for local adaptation of the functions around their regions of use. The
resulting algorithm is relatively cheap to implement, and overfitting is
counterbalanced by the inclusion of a novel damping criterion, which penalizes
unwanted oscillations from a predefined shape. Experimental results validate
the proposal over two well-known benchmarks.Comment: Submitted to the 27th Italian Workshop on Neural Networks (WIRN 2017
Computational Fluid Dynamics Simulations at Micro-Scale Stenosis for Microfluidic Thrombosis Model Characterization
Platelet aggregation plays a central role in pathological thrombosis, preventing healthy physiological blood flow within the circulatory system. For decades, it was believed that platelet aggregation was primarily driven by soluble agonists such as thrombin, adenosine diphosphate and thromboxane A2. However, recent experimental findings have unveiled an intriguing but complementary biomechanical mechanism—the shear rate gradients generated from flow disturbance occurring at sites of blood vessel narrowing, otherwise known as stenosis, may rapidly trigger platelet recruitment and subsequent aggregation. In our Nature Materials 2019 paper [1], we employed microfluidic devices which incorporated micro-scale stenoses to elucidate the molecular insights underlying the prothrombotic effect of blood flow disturbance. Nevertheless, the rheological mechanisms associated with this stenotic microfluidic device are poorly characterized. To this end, we developed a computational fluid dynamics (CFD) simulation approach to systematically analyze the hemodynamic influence of bulk flow mechanics and flow medium. Grid sensitivity studies were performed to ensure accurate and reliable results. Interestingly, the peak shear rate was significantly reduced with the device thickness, suggesting that fabrication of microfluidic devices should retain thicknesses greater than 50 µm to avoid unexpected hemodynamic aberration, despite thicker devices raising the cost of materials and processing time of photolithography. Overall, as many groups in the field have designed microfluidic devices to recapitulate the effect of shear rate gradients and investigate platelet aggregation, our numerical simulation study serves as a guideline for rigorous design and fabrication of microfluidic thrombosis models
Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular Beam Epitaxy Grown Monolayer Vanadium Ditelluride.
We present a combined experimental and theoretical study of monolayer vanadium ditelluride, VTe2, grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Using various in situ microscopic and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray absorption, together with theoretical analysis by density functional theory calculations, we demonstrate direct evidence of the metallic 1T phase and 3d1 electronic configuration in monolayer VTe2 that also features a (4 × 4) charge density wave order at low temperatures. In contrast to previous theoretical predictions, our element-specific characterization by X-ray magnetic circular dichroism rules out a ferromagnetic order intrinsic to the monolayer. Our findings provide essential knowledge necessary for understanding this interesting yet less explored metallic monolayer in the emerging family of van der Waals magnets
Correction to Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular-Beam Epitaxy Grown Monolayer Vanadium Ditelluride.
It has been brought to our attention that a mistake exists in the author list. The author “Johnson Goh” in the original article should be “Kuan Eng Johnson Goh”. His primary corresponding email is [email protected]
Nonlinear optics and optical limiting properties of multifunctional fullerenol/polymer composite
The nonlinear optics and optical limiting properties of materials based on
multifunctional fullerenol and poly(styrene-co-4-vinylpyridine) matrix were
studied using 7 ns pulses of nanosecond laser operating at 532 nm wavelength.
The observed imaginary and real parts of third order susceptibility of the
fullerenol/polymer composite are found to be lower than that of its parent C60.
The optical limiting performances of fullerenol and fullerenol incorporated
with poly(styrene-co-4-vinylpyridine) have been proved to be poorer than that
of C60 due to their higher limiting thresholds. Concentration dependence of
poly(styrene-co-4-vinylpyridine) containing 32 mol% has been mainly contributed
to the optical limiting performance of fullerenol.Comment: 23 pages, 9 figures, presented in ISMOA-2002, Bandung, Indonesia.
Submitted to J. Nonlinear Opt. Phys. (December 2002
Cosmic Ray Spectra in Nambu-Goldstone Dark Matter Models
We discuss the cosmic ray spectra in annihilating/decaying Nambu-Goldstone
dark matter models. The recent observed positron/electron excesses at PAMELA
and Fermi experiments are well fitted by the dark matter with a mass of 3TeV
for the annihilating model, while with a mass of 6 TeV for the decaying model.
We also show that the Nambu-Goldstone dark matter models predict a distinctive
gamma-ray spectrum in a certain parameter space.Comment: 16 pages, 4 figure
An SO(10) Grand Unified Theory of Flavor
We present a supersymmetric SO(10) grand unified theory (GUT) of flavor based
on an family symmetry. It makes use of our recent proposal to use SO(10)
with type II seesaw mechanism for neutrino masses combined with a simple ansatz
that the dominant Yukawa matrix (the {\bf 10}-Higgs coupling to matter) has
rank one. In this paper, we show how the rank one model can arise within some
plausible assumptions as an effective field theory from vectorlike {\bf 16}
dimensional matter fields with masses above the GUT scale. In order to obtain
the desired fermion flavor texture we use flavon multiplets which acquire
vevs in the ground state of the theory. By supplementing the theory with
an additional discrete symmetry, we find that the flavon vacuum field
alignments take a discrete set of values provided some of the higher
dimensional couplings are small. Choosing a particular set of these vacuum
alignments appears to lead to an unified understanding of observed quark-lepton
flavor:
(i) the lepton mixing matrix that is dominantly tri-bi-maximal with small
corrections related to quark mixings; (ii) quark lepton mass relations at GUT
scale: and and (iii) the solar to
atmospheric neutrino mass ratio in agreement with observations. The model predicts the neutrino
mixing parameter, ,
which should be observable in planned long baseline experiments.Comment: Final version of the paper as it will appear in JHEP
Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library
10.1186/1755-8794-5-34BMC Medical Genomics5
Insights into the Ecological Roles and Evolution of Methyl-Coenzyme M Reductase-Containing Hot Spring Archaea
Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor
Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)
We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe
- …