9,634 research outputs found

    A Random Force is a Force, of Course, of Coarse: Decomposing Complex Enzyme Kinetics with Surrogate Models

    Full text link
    The temporal autocorrelation (AC) function associated with monitoring order parameters characterizing conformational fluctuations of an enzyme is analyzed using a collection of surrogate models. The surrogates considered are phenomenological stochastic differential equation (SDE) models. It is demonstrated how an ensemble of such surrogate models, each surrogate being calibrated from a single trajectory, indirectly contains information about unresolved conformational degrees of freedom. This ensemble can be used to construct complex temporal ACs associated with a "non-Markovian" process. The ensemble of surrogates approach allows researchers to consider models more flexible than a mixture of exponentials to describe relaxation times and at the same time gain physical information about the system. The relevance of this type of analysis to matching single-molecule experiments to computer simulations and how more complex stochastic processes can emerge from a mixture of simpler processes is also discussed. The ideas are illustrated on a toy SDE model and on molecular dynamics simulations of the enzyme dihydrofolate reductase.Comment: 11 pages / 6 figure

    Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments

    Get PDF
    Optical microscopy provides rich spatio-temporal information characterizing in vivo molecular motion. However, effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study focuses on techniques for analyzing Single Particle Tracking (SPT) data experiencing abrupt state changes. We demonstrate the approach on GFP tagged chromatids experiencing metaphase in yeast cells and probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes are induced by factors such as microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, etc. Simulations are used to demonstrate the relevance of the approach in more general SPT data analyses. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and subjective information.Comment: 25 pages, 6 figures. Differs only typographically from PLoS One publication available freely as an open-access article at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.013763

    Fitting Effective Diffusion Models to Data Associated with a "Glassy Potential": Estimation, Classical Inference Procedures and Some Heuristics

    Full text link
    A variety of researchers have successfully obtained the parameters of low dimensional diffusion models using the data that comes out of atomistic simulations. This naturally raises a variety of questions about efficient estimation, goodness-of-fit tests, and confidence interval estimation. The first part of this article uses maximum likelihood estimation to obtain the parameters of a diffusion model from a scalar time series. I address numerical issues associated with attempting to realize asymptotic statistics results with moderate sample sizes in the presence of exact and approximated transition densities. Approximate transition densities are used because the analytic solution of a transition density associated with a parametric diffusion model is often unknown.I am primarily interested in how well the deterministic transition density expansions of Ait-Sahalia capture the curvature of the transition density in (idealized) situations that occur when one carries out simulations in the presence of a "glassy" interaction potential. Accurate approximation of the curvature of the transition density is desirable because it can be used to quantify the goodness-of-fit of the model and to calculate asymptotic confidence intervals of the estimated parameters. The second part of this paper contributes a heuristic estimation technique for approximating a nonlinear diffusion model. A "global" nonlinear model is obtained by taking a batch of time series and applying simple local models to portions of the data. I demonstrate the technique on a diffusion model with a known transition density and on data generated by the Stochastic Simulation Algorithm.Comment: 30 pages 10 figures Submitted to SIAM MMS (typos removed and slightly shortened

    Robust Hypothesis Tests for Detecting Statistical Evidence of 2D and 3D Interactions in Single-Molecule Measurements

    Full text link
    A variety of experimental techniques have improved the 2D and 3D spatial resolution that can be extracted from \emph{in vivo} single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native cellular environments. Situations where such forces are biologically relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x,yx,y (or x,y,zx,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions should be considered to more faithfully represent the underlying experimental kinetics. The technique is robust in the sense that 2D (3D) interactions can be detected via statistical hypothesis testing even if there is substantial inconsistency between the physical particle's actual noise sources and the simplified model's assumed noise structure. For example, 2D (3D) interactions can be reliably detected even if the researcher assumes normal diffusion, but the experimental data experiences "anomalous diffusion" and/or is subjected to a measurement noise characterized by a distribution differing from that assumed by the fitted model. The approach is demonstrated on control simulations and on experimental data (IFT88 directed transport in the primary cilium).Comment: 7 pages, 6 figure
    • …
    corecore