316,537 research outputs found

    The capacity of the noisy quantum channel

    Get PDF
    An upper limit is given to the amount of quantum information that can be transmitted reliably down a noisy, decoherent quantum channel. A class of quantum error-correcting codes is presented that allow the information transmitted to attain this limit. The result is the quantum analog of Shannon's bound and code for the noisy classical channel.Comment: 19 pages, Submitted to Science. Replaced give correct references to work of Schumacher, to add a figure and an appendix, and to correct minor mistake

    Observability of the Bulk Casimir Effect: Can the Dynamical Casimir Effect be Relevant to Sonoluminescence?

    Get PDF
    The experimental observation of intense light emission by acoustically driven, periodically collapsing bubbles of air in water (sonoluminescence) has yet to receive an adequate explanation. One of the most intriguing ideas is that the conversion of acoustic energy into photons occurs quantum mechanically, through a dynamical version of the Casimir effect. We have argued elsewhere that in the adiabatic approximation, which should be reliable here, Casimir or zero-point energies cannot possibly be large enough to be relevant. (About 10 MeV of energy is released per collapse.) However, there are sufficient subtleties involved that others have come to opposite conclusions. In particular, it has been suggested that bulk energy, that is, simply the naive sum of 12ω{1\over2}\hbar\omega, which is proportional to the volume, could be relevant. We show that this cannot be the case, based on general principles as well as specific calculations. In the process we further illuminate some of the divergence difficulties that plague Casimir calculations, with an example relevant to the bag model of hadrons.Comment: 13 pages, REVTe

    DMRG and the Two Dimensional t-J Model

    Full text link
    We describe in detail the application of the recent non-Abelian Density Matrix Renormalization Group (DMRG) algorithm to the two dimensional t-J model. This extension of the DMRG algorithm allows us to keep the equivalent of twice as many basis states as the conventional DMRG algorithm for the same amount of computational effort, which permits a deeper understanding of the nature of the ground state.Comment: 16 pages, 3 figures. Contributed to the 2nd International Summer School on Strongly Correlated Systems, Debrecen, Hungary, Sept. 200

    Gap solitons in Bragg gratings with a harmonic superlattice

    Full text link
    Solitons are studied in a model of a fiber Bragg grating (BG) whose local reflectivity is subjected to periodic modulation. The superlattice opens an infinite number of new bandgaps in the model's spectrum. Averaging and numerical continuation methods show that each gap gives rise to gap solitons (GSs), including asymmetric and double-humped ones, which are not present without the superlattice.Computation of stability eigenvalues and direct simulation reveal the existence of completely stable families of fundamental GSs filling the new gaps - also at negative frequencies, where the ordinary GSs are unstable. Moving stable GSs with positive and negative effective mass are found too.Comment: 7 pages, 3 figures, submitted to EP

    Planck Scale Physics of the Single Particle Schr\"{o}dinger Equation with Gravitational Self-Interaction

    Get PDF
    We consider the modification of a single particle Schr\"{o}dinger equation by the inclusion of an additional gravitational self-potential term which follows from the prescription that the' mass-density'that enters this term is given by mψ(r,t)2m |\psi (\vec {r},t)|^2, where ψ(r,t)\psi (\vec {r}, t) is the wavefunction and mm is the mass of the particle. This leads to a nonlinear equation, the ' Newton Schrodinger' equation, which has been found to possess stationary self-bound solutions, whose energy can be determined exactly using an asymptotic method. We find that such a particle strongly violates superposition and becomes a black hole as its mass approaches the Planck mass.Comment: 16 pages, Revtex, No figure, Submitted to Physics Letters

    String Method for the Study of Rare Events

    Full text link
    We present a new and efficient method for computing the transition pathways, free energy barriers, and transition rates in complex systems with relatively smooth energy landscapes. The method proceeds by evolving strings, i.e. smooth curves with intrinsic parametrization whose dynamics takes them to the most probable transition path between two metastable regions in the configuration space. Free energy barriers and transition rates can then be determined by standard umbrella sampling technique around the string. Applications to Lennard-Jones cluster rearrangement and thermally induced switching of a magnetic film are presented.Comment: 4 pages, 4 figure

    Analysis of hadronic invariant mass spectrum in inclusive charmless semileptonic B decays

    Get PDF
    We make an analysis of the hadronic invariant mass spectrum in inclusive charmless semileptonic B meson decays in a QCD-based approach. The decay width is studied as a function of the invariant mass cut. We examine their sensitivities to the parameters of the theory. The theoretical uncertainties in the determination of Vub|V_{ub}| from the hadronic invariant mass spectrum are investigated. A strategy for improving the theoretical accuracy in the value of Vub|V_{ub}| is described.Comment: 13 pages, 5 Postscript figure

    Spherically symmetric space-time with the regular de Sitter center

    Full text link
    The requirements are formulated which lead to the existence of the class of globally regular solutions to the minimally coupled GR equations which are asymptotically de Sitter at the center. The brief review of the resulting geometry is presented. The source term, invariant under radial boots, is classified as spherically symmetric vacuum with variable density and pressure, associated with an r-dependent cosmological term, whose asymptotic in the origin, dictated by the weak energy condition, is the Einstein cosmological term. For this class of metrics the ADM mass is related to both de Sitter vacuum trapped in the origin and to breaking of space-time symmetry. In the case of the flat asymptotic, space-time symmetry changes smoothly from the de Sitter group at the center to the Lorentz group at infinity. Dependently on mass, de Sitter-Schwarzschild geometry describes a vacuum nonsingular black hole, or G-lump - a vacuum selfgravitating particlelike structure without horizons. In the case of de Sitter asymptotic at infinity, geometry is asymptotically de Sitter at both origin and infinity and describes, dependently on parameters and choice of coordinates, a vacuum nonsingular cosmological black hole, selfgravitating particlelike structure at the de Sitter background and regular cosmological models with smoothly evolving vacuum energy density.Comment: Latex, 10 figures, extended version of the plenary talk at V Friedmann Intern. Conf. on Gravitation and Cosmology, Brazil 2002, to appear in Int.J.Mod.Phys.

    Electromagnetic Meson Form Factors in the Salpeter Model

    Get PDF
    We present a covariant scheme to calculate mesonic transitions in the framework of the Salpeter equation for qqˉq\bar{q}-states. The full Bethe Salpeter amplitudes are reconstructed from equal time amplitudes which were obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a confining plus an instanton induced interaction. This method is applied to calculate electromagnetic form factors and decay widths of low lying pseudoscalar and vector mesons including predictions for CEBAF experiments. We also describe the momentum transfer dependence for the processes π0,η,ηγγ\pi^0,\eta,\eta'\rightarrow\gamma\gamma^*.Comment: 22 pages including 10 figure

    The neutron halo of 6^6He in a microscopic model

    Full text link
    The two--neutron separation energy of 6^6He has been reproduced for the first time in a realistic parameter--free microscopic multicluster model comprising the α+n+n\alpha +n+n and t+tt+t clusterizations, with α\alpha cluster breathing excitations included. The contribution of the t+tt+t channel is substantial. A very thick (0.85 fm) neutron halo has been found in full agreement with the results of the latest phenomenological analysis.Comment: Submitted to Phys. Rev. C, 8 pages, Latex with Revtex, 2 figures (not included) available on request, 08-03-9
    corecore