22,173 research outputs found

    Spinning jets

    Get PDF
    A fluid jet with a finite angular velocity is subject to centripetal forces in addition to surface tension forces. At fixed angular momentum, centripetal forces become large when the radius of the jet goes to zero. We study the possible importance of this observation for the pinching of a jet within a slender jet model. A linear stability analysis shows the model to break down at low viscosities. Numerical simulations indicate that angular momentum is expelled from the pinch region so fast that it becomes asymptotically irrelevant in the limit of the neck radius going to zero

    Nuclear shadowing and prompt photons at relativistic hadron colliders

    Full text link
    The production of prompt photons at high energies provides a direct probe of the dynamics of the strong interactions. In particular, one expect that it could be used to constrain the behavior of the nuclear gluon distribution in pApA and AAAA collisions. In this letter we investigate the influence of nuclear effects in the production of prompt photons and estimate the transverse momentum dependence of the nuclear ratios RpA=dσ(pA)dyd2pT/Adσ(pp)dyd2pTR_{pA} = {\frac{d\sigma (pA)}{dy d^2 p_T}} / A {\frac{d\sigma (pp)}{dy d^2 p_T}} and RAA=dσ(AA)dyd2pT/A2dσ(pp)dyd2pTR_{AA} = {\frac{d\sigma (AA)}{dy d^2 p_T}} / A^2 {\frac{d\sigma (pp)}{dy d^2 p_T}} at RHIC and LHC energies. We demonstrate that the study of these observables can be useful to determine the magnitude of the shadowing and antishadowing effects in the nuclear gluon distribution.Comment: 4 pages, 3 figures. Version to be published in PR

    Gradient discretization of Hybrid Dimensional Darcy Flows in Fractured Porous Media with discontinuous pressures at the matrix fracture interfaces

    Get PDF
    We investigate the discretization of Darcy flow through fractured porous media on general meshes. We consider a hybrid dimensional model, invoking a complex network of planar fractures. The model accounts for matrix-fracture interactions and fractures acting either as drains or as barriers, i.e. we have to deal with pressure discontinuities at matrix-fracture interfaces. The numerical analysis is performed in the general framework of gradient discretizations which is extended to the model under consideration. Two families of schemes namely the Vertex Approximate Gradient scheme (VAG) and the Hybrid Finite Volume scheme (HFV) are detailed and shown to satisfy the gradient scheme framework, which yields, in particular, convergence. Numerical tests confirm the theoretical results. Gradient Discretization; Darcy Flow, Discrete Fracture Networks, Finite Volum
    corecore