330 research outputs found
Multiple-Scattering Series For Color Transparency
Color transparency CT depends on the formation of a wavepacket of small
spatial extent. It is useful to interpret experimental searches for CT with a
multiple scattering scattering series based on wavepacket-nucleon scattering
instead of the standard one using nucleon-nucleon scattering. We develop
several new techniques which are valid for differing ranges of energy. These
techniques are applied to verify some early approximations; study new forms of
the wave-packet-nucleon interaction; examine effects of treating wave packets
of non-zero size; and predict the production of 's in electron scattering
experiments.Comment: 26 pages, U.Wa. preprint 40427-23-N9
Higher Twist Effects in the Drell-Yan Angular Distribution
We study the Drell-Yan process at large
using perturbative QCD. A higher-twist mechanism suggested by Berger and
Brodsky is known to qualitatively explain the observed dependence of the
muon angular distribution, but the predicted large behavior differs
quantitatively from observations. We have repeated the model calculation taking
into account the effects of nonasymptotic kinematics. At fixed-target energies
we find important corrections which improve the agreement with data. The
asymptotic result of Berger and Brodsky is recovered only at much higher
energies. We discuss the generic reasons for the large corrections at high
. A proper understanding of the data would give important
information on the pion distribution amplitude and exclusive form factor.Comment: 8 pages in Latex with 3 figures appended as Postscript files,
HU-TFT-94-12, LBL-35430. (The introductory part has been slightly altered and
three references have been added
Vector-pseudoscalar two-meson distribution amplitudes in three-body meson decays
We study three-body nonleptonic decays by introducing two-meson
distribution amplitudes for the vector-pseudoscalar pair, such that the
analysis is simplified into the one for two-body decays. The twist-2 and
twist-3 two-meson distribution amplitudes, associated with
longitudinally and transversely polarized mesons, are constrained by the
experimental data of the and branching
ratios. We then predict the and decay
spectra in the invariant mass. Since the resonant contribution in the
channel is negligible, the above decay spectra provide a clean test
for the application of two-meson distribution amplitudes to three-body
meson decays.Comment: 9 pages, 1 figure, Revtex4, version to appear in PR
A Model for the Twist-3 Wave Function of the Pion and Its Contribution to the Pion Form Factor
A model for the twist-3 wave function of the
pion has been constructed based on the moment calculation by applying the QCD
sum rules, whose distribution amplitude has a better end-point behavior than
that of the asymptotic one. With this model wave function, the twist-3
contributions including both the usual helicity components
() and the higher helicity components
() to the pion form factor have been studied within
the modified pQCD approach. Our results show that the twist-3 contribution
drops fast and it becomes less than the twist-2 contribution at . The higher helicity components in the twist-3 wave function will give
an extra suppression to the pion form factor. The model dependence of the
twist-3 contribution to the pion form factor has been studied by comparing
three different models. When all the power contributions, which include higher
order in , higher helicities, higher twists in DA and etc., have been
taken into account, it is expected that the hard contributions will fit the
present experimental data well at the energy region where pQCD is applicable.Comment: 22pages,4 figures. Phys.Rev. D70, 093013(2004) (in press
Systematic Analysis Method for Color Transparency Experiments
We introduce a data analysis procedure for color transparency experiments
which is considerably less model dependent than the transparency ratio method.
The new method is based on fitting the shape of the A dependence of the nuclear
cross section at fixed momentum transfer to determine the effective attenuation
cross section for hadrons propagating through the nucleus. The procedure does
not require assumptions about the hard scattering rate inside the nuclear
medium. Instead, the hard scattering rate is deduced directly from the data.
The only theoretical input necessary is in modelling the attenuation due to the
nuclear medium, for which we use a simple exponential law. We apply this
procedure to the Brookhaven experiment of Carroll et al and find that it
clearly shows color transparency: the effective attenuation cross section in
events with momentum transfer is approximately $40\ mb\ (2.2\
GeV^2/Q^2)$. The fit to the data also supports the idea that the hard
scattering inside the nuclear medium is closer to perturbative QCD predictions
than is the scattering of isolated protons in free space. We also discuss the
application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request),
report # KU-HEP-92-2
Hadron Helicity Violation in Exclusive Processes: Quantitative Calculations in Leading Order QCD
We study a new mechanism for hadronic helicity flip in high energy hard
exclusive reactions. The mechanism proceeds in the limit of perfect chiral
symmetry, namely without any need to flip a quark helicity. The fundamental
feature of the new mechanism is the breaking of rotational symmetry of the hard
collision by a scattering plane in processes involving independent quark
scattering. We show that in the impulse approximation there is no evidence for
of the helicity violating process as the energy or momentum transfer is
increased over the region 1 GeV^2 < Q^2 < 100 GeV^2. In the asymptotic region
Q^2> 1000 GeV^2, a saddle point approximation with doubly logarithmic accuracy
yields suppression by a fraction of power of Q^2. ``Chirally--odd" exclusive
wave functions which carry non--zero orbital angular momentum and yet are
leading order in the high energy limit, play an important role.Comment: uuencoded LaTeX file (21 pages) and PostScript figure
On hard exclusive reactions in the time-like region
The proton form factor, two-photon annihilations into as well as
exclusive charmonium decays are critically examined. It will be argued that the
standard perturbative QCD analysis of these reactions fails, i.e. the need for
additional contributions can convincingly be demonstrated. Possible dynamical
mechanisms such as colour-octet admixtures to the charmonium states or diquarks
inside baryons, will be discussed and compared to the data.Comment: Invited talk presented at the Fourth Biennal Conference on Low-Energy
Antiproton Physics, LEAP96, Dinkelsb\"{u}hl (August 1996); 8 pages, LaTeX, 4
PS-figures; uses 'espcrc2.sty' and 'psfig.sty
Consistent Analysis of the Transition Form Factor in the Whole Physical Region
In the paper, we show that the transition form factor can be
calculated by using the different approach in the different regions and
they are consistent with each other in the whole physical region. For the
transition form factor in the large recoil regions, one can apply the
PQCD approach, where the transverse momentum dependence for both the hard
scattering part and the non-perturbative wavefunction, the Sudakov effects and
the threshold effects are included to regulate the endpoint singularity and to
derive a more reliable PQCD result. Pionic twist-3 contributions are carefully
studied with a better endpoint behavior wavefunction for and we find
that its contribution is less than the leading twist contribution. Both the two
wavefunctions and of the B meson can give sizable
contributions to the transition form factor and should be kept for a
better understanding of the B decays. The present obtained PQCD results can
match with both the QCD light-cone sum rule results and the extrapolated
lattice QCD results in the large recoil regions.Comment: 18pages, 6 figure
Wide-angle elastic scattering and color randomization
Baryon-baryon elastic scattering is considered in the independent scattering
(Landshoff) mechanism. It is suggested that for scattering at moderate
energies, direct and interchange quark channels contribute with equal color
coefficients because the quark color is randomized by soft gluon exchange
during the hadronization stage. With this assumption, it is shown that the
ratio of cross sections at CM angle
decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to
R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate
energies. This sizable fall in the ratio seems to be characteristic of the
Landshoff mechanism, in which changes at the quark level have a strong effect
precisely because the hadronic process occurs via multiple quark scatterings.
The effect of color randomization on the angular distribution of proton-proton
elastic scattering and the cross section ratio is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include
Cost Analysis In A Multi-Mission Operations Environment
Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature serviceoriented, multi-mission control centers to streamline or refine their cost analysis process
- …