94 research outputs found

    Spin-based optical quantum gates via Pauli blocking in semiconductor quantum dots

    Full text link
    We present a solid-state implementation of ultrafast conditional quantum gates. Our proposal for a quantum-computing device is based on the spin degrees of freedom of electrons confined in semiconductor quantum dots, thus benefiting from relatively long decoherence times. More specifically, combining Pauli blocking effects with properly tailored ultrafast laser pulses, we are able to obtain sub-picosecond spin-dependent switching of the Coulomb interaction, which is the essence of our conditional phase-gate proposal. This allows us to realize {\it a fast two qubit gate which does not translate into fast decoherence times} and paves the road for an all-optical spin-based quantum computer.Comment: 14 Pages RevTeX, 3 eps figures include

    Quantum information processing in bosonic lattices

    Get PDF
    We consider a class of models of self-interacting bosons hopping on a lattice. We show that properly tailored space-temporal coherent control of the single-body coupling parameters allows for universal quantum computation in a given sector of the global Fock space. This general strategy for encoded universality in bosonic systems has in principle several candidates for physical implementation.Comment: 4 pages, 2 figs, RevTeX 4; updated to the published versio

    Semiconductor-based Geometrical Quantum Gates

    Get PDF
    We propose an implementation scheme for holonomic, i.e., geometrical, quantum information processing based on semiconductor nanostructures. Our quantum hardware consists of coupled semiconductor macroatoms addressed/controlled by ultrafast multicolor laser-pulse sequences. More specifically, logical qubits are encoded in excitonic states with different spin polarizations and manipulated by adiabatic time-control of the laser amplitudes . The two-qubit gate is realized in a geometric fashion by exploiting dipole-dipole coupling between excitons in neighboring quantum dots.Comment: 4 Pages LaTeX, 3 Figures included. To appear in PRB (Rapid Comm.

    Non-adiabatic geometrical quantum gates in semiconductor quantum dots

    Get PDF
    In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implementedComment: 5 Pages LaTeX, 10 Figures include

    Optimal quantum control in nanostructures: Theory and application to generic three-level system

    Full text link
    Coherent carrier control in quantum nanostructures is studied within the framework of Optimal Control. We develop a general solution scheme for the optimization of an external control (e.g., lasers pulses), which allows to channel the system's wavefunction between two given states in its most efficient way; physically motivated constraints, such as limited laser resources or population suppression of certain states, can be accounted for through a general cost functional. Using a generic three-level scheme for the quantum system, we demonstrate the applicability of our approach and identify the pertinent calculation and convergence parameters.Comment: 7 pages; to appear in Phys. Rev.

    Holonomic quantum gates: A semiconductor-based implementation

    Get PDF
    We propose an implementation of holonomic (geometrical) quantum gates by means of semiconductor nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it all optical control}). Our logical bits are Coulomb-correlated electron-hole pairs (excitons) in a four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include
    • …
    corecore