17 research outputs found

    Recall termination in free recall

    Get PDF
    Although much is known about the dynamics of memory search in the free recall task, relatively little is known about the factors related to recall termination. Reanalyzing individual trial data from 14 prior studies (1,079 participants in 28,015 trials) and defining termination as occurring when a final response is followed by a long nonresponse interval, we observed that termination probability increased throughout the recall period and that retrieval was more likely to terminate following an error than following a correct response. Among errors, termination probability was higher following prior-list intrusions and repetitions than following extralist intrusions. To verify that this pattern of results can be seen in a single study, we report a new experiment in which 80 participants contributed recall data from a total of 9,122 trials. This experiment replicated the pattern observed in the aggregate analysis of the prior studies

    Modeling working memory: An interference model of complex span

    Full text link
    This article introduces a new computational model for the complex-span task, the most popular task for studying working memory. SOB-CS is a two-layer neural network that associates distributed item representations with distributed, overlapping position markers. Memory capacity limits are explained by interference from a superposition of associations. Concurrent processing interferes with memory through involuntary encoding of distractors. Free time in-between distractors is used to remove irrelevant representations, thereby reducing interference. The model accounts for benchmark findings in four areas: (1) effects of processing pace, processing difficulty, and number of processing steps; (2) effects of serial position and error patterns; (3) effects of different kinds of item-distractor similarity; and (4) correlations between span tasks. The model makes several new predictions in these areas, which were confirmed experimentally

    Interactions Between Short-term and Long-term Memory in the Verbal Domain

    No full text
    The relationship between short-term and long-term memory systems is an issue of central concern to memory theorists. The association between temporary memory mechanisms and established knowledge bases is now regarded as critical to the development of theoretical and computational accounts of verbal short-term memory functioning. However, to date there is no single publication that provides dedicated and full coverage of current understanding of the association between short-term and long-term memory systems. Interactions between Short-Term and Long-Term Memory in the Verbal Domain is the first volume to comprehensively address this key issue. The book, focusing specifically on memory for verbal information, comprises chapters covering current theoretical approaches, together with the very latest experimental work, from leading researchers in the field. Chapters contributed to the book draw on both cognitive and neuropsychological research and reflect both conceptual and computational approaches to theorising. The contributing authors represent current research perspectives from both sides of the Atlantic. By addressing this important topic head-on, Interactions between Short-Term and Long-Term Memory in the Verbal Domain represents an invaluable resource for academics and students alike

    Modeling working memory: a computational implementation of the Time-Based Resource-Sharing theory

    Full text link
    Working memory is a core concept in cognition, predicting about 50% of the variance in IQ and reasoning tasks. A popular test of working memory is the complex span task, in which encoding of memoranda alternates with processing of distractors. A recent model of complex span performance, the Time-Based-Resource-Sharing (TBRS) model of Barrouillet and colleagues, has seemingly accounted for several crucial findings, in particular the intricate trade-off between deterioration and restoration of memory in the complex span task. According to the TBRS, memory traces decay during processing of the distractors, and they are restored by attentional refreshing during brief pauses in between processing steps. However, to date, the theory has been formulated only at a verbal level, which renders it difficult to test and to be certain of its intuited predictions. We present a computational instantiation of the TBRS and show that it can handle most of the findings on which the verbal model was based. We also show that there are potential challenges to the model that await future resolution. This instantiated model, TBRS*, is the first comprehensive computational model of performance in the complex span paradigm. The Matlab model code is available as a supplementary material of this article

    Examining the relationship between free recall and immediate serial recall: The serial nature of recall and the effect of test expectancy

    No full text
    In two experiments, we examined the relationship between free recall and immediate serial recall (ISR), using a within-subjects (Experiment 1) and a between-subjects (Experiment 2) design. In both experiments, participants read aloud lists of eight words and were precued or postcued to respond using free recall or ISR. The serial position curves were U-shaped for free recall and showed extended primacy effects with little or no recency for ISR, and there was little or no difference between recall for the precued and the postcued conditions. Critically, analyses of the output order showed that although the participants started their recall from different list positions in the two tasks, the degree to which subsequent recall was serial in a forward order was strikingly similar. We argue that recalling in a serial forward order is a general characteristic of memory and that performance on ISR and free recall is underpinned by common memory mechanisms. Copyright 2008 Psychonomic Society, Inc

    Examining the relationship between free recall and immediate serial recall: Similar patterns of rehearsal and similar effects of word length, presentation rate, and articulatory suppression

    No full text
    In five experiments, rehearsal and recall phenomena were examined using the free recall and immediate serial recall (ISR) tasks. In Experiment 1, participants were presented with lists of eight words, were precued or postcued to respond using free recall or ISR, and rehearsed out loud during presentation. The patterns of rehearsal were similar in all the conditions, and there was little difference between recall in the precued and postcued conditions. In Experiment 2, both free recall and ISR were sensitive to word length and presentation rate and showed similar patterns of rehearsal. In Experiment 3, both tasks were sensitive to word length and articulatory suppression. The word length effects generalized to 6-item (Experiment 4) and 12-item (Experiment 5) lists. These findings suggest that the two tasks are underpinned by highly similar rehearsal and recall processes. © 2009 The Psychonomic Society, Inc
    corecore