2,371 research outputs found

    Complex delay dynamics on railway networks: from universal laws to realistic modelling

    Full text link
    Railways are a key infrastructure for any modern country. The reliability and resilience of this peculiar transportation system may be challenged by different shocks such as disruptions, strikes and adverse weather conditions. These events compromise the correct functioning of the system and trigger the spreading of delays into the railway network on a daily basis. Despite their importance, a general theoretical understanding of the underlying causes of these disruptions is still lacking. In this work, we analyse the Italian and German railway networks by leveraging on the train schedules and actual delay data retrieved during the year 2015. We use {these} data to infer simple statistical laws ruling the emergence of localized delays in different areas of the network and we model the spreading of these delays throughout the network by exploiting a framework inspired by epidemic spreading models. Our model offers a fast and easy tool for the preliminary assessment of the {effectiveness of} traffic handling policies, and of the railway {network} criticalities.Comment: 32 pages (with appendix), 28 Figures (with appendix), 2 Table

    Distributed Discontinuous Coupling for Convergence in Heterogeneous Networks

    Get PDF
    In this letter, we propose the use of a distributed discontinuous coupling protocol to achieve convergence and synchronization in networks of non-identical nonlinear dynamical systems. We show that the synchronous dynamics is a solution to the average of the nodes' vector fields, and derive analytical estimates of the critical coupling gains required to achieve convergence

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

    Design and validation of a virtual player for studying interpersonal coordination in the mirror game

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The mirror game has been recently proposed as a simple, yet powerful paradigm for studying interpersonal interactions. It has been suggested that a virtual partner able to play the game with human subjects can be an effective tool to affect the underlying neural processes needed to establish the necessary connections between the players, and also to provide new clinical interventions for rehabilitation of patients suffering from social disorders. Inspired by the motor processes of the central nervous system (CNS) and the musculoskeletal system in the human body, in this paper we develop a novel interactive cognitive architecture based on nonlinear control theory to drive a virtual player (VP) to play the mirror game with a human player (HP) in different configurations. Specifically, we consider two cases: the former where the VP acts as leader and the latter where it acts as follower. The crucial problem is to design a feedback control architecture capable of imitating and following or leading a human player in a joint action task. Movement of the end-effector of the VP is modeled by means of a feedback controlled Haken-Kelso-Bunz (HKB) oscillator, which is coupled with the observed motion of the HP measured in real time. To this aim, two types of control algorithms (adaptive control and optimal control) are used and implemented on the HKB model so that the VP can generate a human-like motion while satisfying certain kinematic constraints. A proof of convergence of the control algorithms is presented in the paper together with an extensive numerical and experimental validation of their effectiveness. A comparison with other existing designs is also discussed, showing the flexibility and the advantages of our control-based approach.This work was funded by the European Project AlterEgo FP7 ICT 2.9 - Cognitive Sciences and Robotics, Grant Number 600610

    Finding Exogenous Variables in Data with Many More Variables than Observations

    Full text link
    Many statistical methods have been proposed to estimate causal models in classical situations with fewer variables than observations (p<n, p: the number of variables and n: the number of observations). However, modern datasets including gene expression data need high-dimensional causal modeling in challenging situations with orders of magnitude more variables than observations (p>>n). In this paper, we propose a method to find exogenous variables in a linear non-Gaussian causal model, which requires much smaller sample sizes than conventional methods and works even when p>>n. The key idea is to identify which variables are exogenous based on non-Gaussianity instead of estimating the entire structure of the model. Exogenous variables work as triggers that activate a causal chain in the model, and their identification leads to more efficient experimental designs and better understanding of the causal mechanism. We present experiments with artificial data and real-world gene expression data to evaluate the method.Comment: A revised version of this was published in Proc. ICANN201

    Parental Support during the COVID-19 Pandemic: Friend or Foe? A Moderation Analysis of the Association between Maternal Anxiety and Children’s Stress in Italian Dyads

    Get PDF
    There is evidence that parental psychological disorders in stressful situations increase the risk of disturbance in child development. This has been investigated in disasters but not in pandemics, which are sensibly different from other types of traumatic events. We investigated the relationship between mothers’ anxiety and their children’s (self-reported) stress and the boundary conditions of this association during the first full COVID-19 lockdown in Italy. During the COVID-19 pandemic, mothers might have increased their protective attitudes to secure and support their children; we tested whether the relationship between mothers’ anxiety and children’s stress was weaker (buffer effect) or stronger (over-protection effect) when perceived parental support was high. We measured mothers’ anxiety, children’s perceived parental support, and children’s stress in a sample of 414 8- to 11-year-old primary school children (229 females, Mage = 9.44) and 395 mothers (Mage = 42.84). Results supported the over-protection scenario and provided the first evidence for the “helicopter-parent effect” during the COVID-19 pandemic: mothers’ anxiety was positively associated with children’s stress only when perceived support was high. Our finding highlights the importance of educating parents (for example, via emotional training) to prevent the worst consequences of adverse events in children and promote their mental health

    Dark Matter detection via lepton cosmic rays

    Get PDF
    Recent observations of lepton cosmic rays, coming from the PAMELA and FERMI experiments, have pushed our understanding of the interstellar medium and cosmic rays sources to unprecedented levels. The imprint of dark matter on lepton cosmic rays is the most exciting explanation of both PAMELA's positron excess and FERMI's total flux of electrons. Alternatively, supernovae are astrophysical objects with the same potential to explain these observations. In this work, we present an updated study of the astrophysical sources of lepton cosmic rays and the possible trace of a dark matter signal on the positron excess and total flux of electrons.Comment: 6 pages and 3 figures. Proceedings for PASCOS 2010, Valencia, Spai

    Assessment of blood perfusion quality in laparoscopic colorectal surgery by means of Machine Learning

    Get PDF
    An innovative algorithm to automatically assess blood perfusion quality of the intestinal sector in laparoscopic colorectal surgery is proposed. Traditionally, the uniformity of the brightness in indocyanine green-based fluorescence consists only in a qualitative, empirical evaluation, which heavily relies on the surgeon’s subjective assessment. As such, this leads to assessments that are strongly experience-dependent. To overcome this limitation, the proposed algorithm assesses the level and uniformity of indocyanine green used during laparoscopic surgery. The algorithm adopts a Feed Forward Neural Network receiving as input a feature vector based on the histogram of the green band of the input image. It is used to (i) acquire information related to perfusion during laparoscopic colorectal surgery, and (ii) support the surgeon in assessing objectively the outcome of the procedure. In particular, the algorithm provides an output that classifies the perfusion as adequate or inadequate. The algorithm was validated on videos captured during surgical procedures carried out at the University Hospital Federico II in Naples, Italy. The obtained results show a classification accuracy equal to 99.9 % , with a repeatability of 1.9 %. Finally, the real-time operation of the proposed algorithm was tested by analyzing the video streaming captured directly from an endoscope available in the OR

    Moving in unison after perceptual interruption

    Get PDF
    Humans interact in groups through various perception and action channels. The continuity of interaction despite a transient loss of perceptual contact often exists and contributes to goal achievement. Here, we study the dynamics of this continuity, in two experiments involving groups of participants (N= 7) synchronizing their movements in space and in time. We show that behavioural unison can be maintained after perceptual contact has been lost, for about 7s. Agent similarity and spatial configuration in the group modulated synchronization performance, differently so when perceptual interaction was present or when it was memorized. Modelling these data through a network of oscillators enabled us to clarify the double origin of this memory effect, of individual and social nature. These results shed new light into why humans continue to move in unison after perceptual interruption, and are consequential for a wide variety of applications at work, in art and in sport
    • …
    corecore