2,185 research outputs found
Cosmic magnetic fields and dark energy in extended electromagnetism
We discuss an extended version of electromagnetism in which the usual gauge
fixing term is promoted into a physical contribution that introduces a new
scalar state in the theory. This new state can be generated from vacuum quantum
fluctuations during an inflationary era and, on super-Hubble scales, gives rise
to an effective cosmological constant. The value of such a cosmological
constant coincides with the one inferred from observations as long as inflation
took place at the electroweak scale. On the other hand, the new state also
generates an effective electric charge density on sub-Hubble scales that
produces both vorticity and magnetic fields with coherent lengths as large as
the present Hubble horizon.Comment: 4 pages, 2 figures. Contribution to the proceedings of Spanish
Relativity Meeting 2010, Granada, Spain, 6-10 September 201
Metastability of non-reversible mean-field Potts model with three spins
We examine a non-reversible, mean-field Potts model with three spins on a set
with points. Without an external field, there are three
critical temperatures and five different metastable regimes. The analysis can
be extended by a perturbative argument to the case of small external fields. We
illustrate the case of large external fields with some phenomena which are not
present in the absence of external field.Comment: 34 pages, 12 figure
Unveiling the nature and interaction of the intermediate/high-mass YSOs in IRAS 20343+4129
In order to elucidate the nature of the brightest infrared sources associated
with IRAS 20343+4129, IRS1 and IRS3, we observed with the Submillimeter Array
(SMA) the 1.3 mm continuum and CO(2-1) emission of the region. Faint millimeter
dust continuum emission was detected toward IRS1, and we derived an associated
gas mass of ~0.8 Msun. The IRS1 spectral energy distribution agrees with IRS1
being an intermediate-mass Class I source of about 1000 Lsun, whose
circumstellar material is producing the observed large infrared excess. We have
discovered a high-velocity CO bipolar outflow in the east-west direction, which
is clearly associated with IRS1, and the outflow parameters are similar to
those of intermediate-mass young stellar objects. Associated with the blue
large scale CO outflow lobe, detected with single-dish observations, we only
found two elongated low-velocity structures on either side of IRS3. The
large-scale outflow lobe is almost completely resolved out by the SMA. Our
detected low-velocity CO structures are coincident with elongated H2 emission
features. The strongest millimeter continuum condensations in the region are
found on either side of IRS3, where the infrared emission is extremely weak,
and the CO and H2 elongated structures follow the border of the millimeter
continuum emission that is facing IRS3. All these results suggest that the dust
is associated with the walls of an expanding cavity driven by IRS3, estimated
to be a B2 star. Within and beyond the expanding cavity, the millimeter
continuum sources can be sites of future low-mass star formation.Comment: 12 pages, 7 figures, accepted for publication in A&
On the kinematics of massive star forming regions: the case of IRAS 17233-3606
Direct observations of accretion disks around high-mass young stellar objects
would help to discriminate between different models of formation of massive
stars. However, given the complexity of massive star forming regions, such
studies are still limited in number. Additionally, there is still no general
consensus on the molecular tracers to be used for such investigations. Because
of its close distance and high luminosity, IRAS 17233-3606 is a potential good
laboratory to search for traces of rotation in the inner gas around the
protostar(s). Therefore, we selected the source for a detailed analysis of its
molecular emission at 230 GHz with the SMA. We systematically investigated the
velocity fields of transitions in the SMA spectra which are not affected by
overlap with other transitions, and searched for coherent velocity gradients to
compare them to the distribution of outflows in the region. Beside CO emission
we also used high-angular H2 images to trace the outflow motions driven by the
IRAS 17233-3606 cluster. We find linear velocity gradients in many transitions
of the same molecular species and in several molecules. We report the first
detection of HNCO in molecular outflows from massive YSOs. We discuss the CH3CN
velocity gradient taking into account various scenarios: rotation, presence of
multiple unresolved sources with different velocities, and outflow(s). Although
other interpretations cannot be ruled out, we propose that the CH3CN emission
might be affected by the outflows of the region. Higher angular observations
are needed to discriminate between the different scenarios. The present
observations, with the possible association of CH3CN with outflows in a few
thousands AU around the YSOs' cluster, (i) question the choice of the tracer to
probe rotating structures, and (ii) show the importance of the use of H2 images
for detailed studies of kinematics.Comment: accepted for publication in A&
On the chemical ladder of esters. Detection and formation of ethyl formate in the W51 e2 hot molecular core
The detection of organic molecules with increasing complexity and potential
biological relevance is opening the possibility to understand the formation of
the building blocks of life in the interstellar medium. One of the families of
molecules with astrobiological interest are the esters, whose simplest member,
methyl formate, is rather abundant in star-forming regions. The next step in
the chemical complexity of esters is ethyl formate, CHOCHO. Only two
detections of this species have been reported so far, which strongly limits our
understanding of how complex molecules are formed in the interstellar medium.
We have searched for ethyl formate towards the W51 e2 hot molecular core, one
of the most chemically rich sources in the Galaxy and one of the most promising
regions to study prebiotic chemistry, especially after the recent discovery of
the PO bond, key in the formation of DNA. We have analyzed a spectral line
survey towards the W51 e2 hot molecular core, which covers 44 GHz in the 1, 2
and 3 mm bands, carried out with the IRAM 30m telescope. We report the
detection of the trans and gauche conformers of ethyl formate. A Local
Thermodynamic Equilibrium analysis indicates that the excitation temperature is
7810 K and that the two conformers have similar source-averaged column
densities of (2.00.3)10 cm and an abundance of
10. We compare the observed molecular abundances of ethyl formate
with different competing chemical models based on grain surface and gas-phase
chemistry. We propose that grain-surface chemistry may have a dominant role in
the formation of ethyl formate (and other complex organic molecules) in hot
molecular cores, rather than reactions in the gas phase.Comment: Accepted in A&A; 11 pages, 6 figures, 7 Table
First ALMA maps of HCO, an important precursor of complex organic molecules, towards IRAS 16293-2422
The formyl radical HCO has been proposed as the basic precursor of many
complex organic molecules such as methanol (CHOH) or glycolaldehyde
(CHOHCHO). Using ALMA, we have mapped, for the first time at high angular
resolution (1, 140 au), HCO towards the Solar-type
protostellar binary IRAS 162932422, where numerous complex organic molecules
have been previously detected. We also detected several lines of the chemically
related species HCO, CHOH and CHOHCHO. The observations revealed
compact HCO emission arising from the two protostars. The line profiles also
show redshifted absorption produced by foreground material of the circumbinary
envelope that is infalling towards the protostars. Additionally, IRAM 30m
single-dish data revealed a more extended HCO component arising from the common
circumbinary envelope. The comparison between the observed molecular abundances
and our chemical model suggests that whereas the extended HCO from the envelope
can be formed via gas-phase reactions during the cold collapse of the natal
core, the HCO in the hot corinos surrounding the protostars is predominantly
formed by the hydrogenation of CO on the surface of dust grains and subsequent
thermal desorption during the protostellar phase. The derived abundance of HCO
in the dust grains is high enough to produce efficiently more complex species
such as HCO, CHOH, and CHOHCHO by surface chemistry. We found that
the main formation route of CHOHCHO is the reaction between HCO and
CHOH.Comment: Accepted in Monthly Notices of the Royal Astronomical Society; 19
pages, 12 figures, 7 table
- …