186 research outputs found
Continuum limit of the Volterra model, separation of variables and non standard realizations of the Virasoro Poisson bracket
The classical Volterra model, equipped with the Faddeev-Takhtadjan Poisson
bracket provides a lattice version of the Virasoro algebra. The Volterra model
being integrable, we can express the dynamical variables in terms of the so
called separated variables. Taking the continuum limit of these formulae, we
obtain the Virasoro generators written as determinants of infinite matrices,
the elements of which are constructed with a set of points lying on an infinite
genus Riemann surface. The coordinates of these points are separated variables
for an infinite set of Poisson commuting quantities including . The
scaling limit of the eigenvector can also be calculated explicitly, so that the
associated Schroedinger equation is in fact exactly solvable.Comment: Latex, 43 pages Synchronized with the to be published versio
Test of asymptotic freedom and scaling hypothesis in the 2d O(3) sigma model
The 7--particle form factors of the fundamental spin field of the O(3)
nonlinear --model are constructed. We calculate the corresponding
contribution to the spin--spin correlation function, and compare with
predictions from the spectral density scaling hypothesis. The resulting
approximation to the spin--spin correlation function agrees well with that
computed in renormalized (asymptotically free) perturbation theory in the
expected energy range. Further we observe simple lower and upper bounds for the
sum of the absolute square of the form factors which may be of use for analytic
estimates.Comment: 14 pages, 3 figures, late
On symmetries of Chern-Simons and BF topological theories
We describe constructing solutions of the field equations of Chern-Simons and
topological BF theories in terms of deformation theory of locally constant
(flat) bundles. Maps of flat connections into one another (dressing
transformations) are considered. A method of calculating (nonlocal) dressing
symmetries in Chern-Simons and topological BF theories is formulated
Integrability of the Wess_Zumino-Witten model as a non-ultralocal theory
We consider the 2--dimensional Wess--Zumino--Witten (WZW) model in the
canonical formalism introduced in a previous paper by two of us. Using an
-- matrix approach to non--ultralocal field theories we find the Poisson
algebra of monodromy matrices and of conserved quantities with a new,
non--dynamical, matrix.Comment: Revised version. 3 references added. 13 pages, latex, no figure
On Vertex Operator Construction of Quantum Affine Algebras
We describe the construction of the quantum deformed affine Lie algebras
using the vertex operators in the free field theory. We prove the Serre
relations for the quantum deformed Borel subalgebras of affine algebras, namely
the case of is considered in detail. We provide some
formulas for generators of affine algebra.Comment: LaTeX, 9 pages; typos corrected, references adde
Composition of Kinetic Momenta: The U_q(sl(2)) case
The tensor products of (restricted and unrestricted) finite dimensional
irreducible representations of \uq are considered for a root of unity.
They are decomposed into direct sums of irreducible and/or indecomposable
representations.Comment: 27 pages, harvmac and tables macros needed, minor TeXnical revision
to allow automatic TeXin
On anomalies in classical dynamical systems
The definition of "classical anomaly" is introduced. It describes the
situation in which a purely classical dynamical system which presents both a
lagrangian and a hamiltonian formulation admits symmetries of the action for
which the Noether conserved charges, endorsed with the Poisson bracket
structure, close an algebra which is just the centrally extended version of the
original symmetry algebra. The consistency conditions for this to occur are
derived. Explicit examples are given based on simple two-dimensional models.
Applications of the above scheme and lines of further investigations are
suggested.Comment: arXiv version is already officia
Integrable mixing of A_{n-1} type vertex models
Given a family of monodromy matrices {T_u; u=0,1,...,K-1} corresponding to
integrable anisotropic vertex models of A_{(n_u)-1}-type, we build up a related
mixed vertex model by means of glueing the lattices on which they are defined,
in such a way that integrability property is preserved. Algebraically, the
glueing process is implemented through one dimensional representations of
rectangular matrix algebras A(R_p,R_q), namely, the `glueing matrices' zeta_u.
Here R_n indicates the Yang-Baxter operator associated to the standard Hopf
algebra deformation of the simple Lie algebra A_{n-1}. We show there exists a
pseudovacuum subspace with respect to which algebraic Bethe ansatz can be
applied. For each pseudovacuum vector we have a set of nested Bethe ansatz
equations identical to the ones corresponding to an A_{m-1} quasi-periodic
model, with m equal to the minimal range of involved glueing matrices.Comment: REVTeX 28 pages. Here we complete the proof of integrability for
mixed vertex models as defined in the first versio
R-matrix Quantization of the Elliptic Ruijsenaars--Schneider model
It is shown that the classical L-operator algebra of the elliptic
Ruijsenaars-Schneider model can be realized as a subalgebra of the algebra of
functions on the cotangent bundle over the centrally extended current group in
two dimensions. It is governed by two dynamical r and -matrices
satisfying a closed system of equations. The corresponding quantum R and
-matrices are found as solutions to quantum analogs of these
equations. We present the quantum L-operator algebra and show that the system
of equations on R and arises as the compatibility condition for
this algebra. It turns out that the R-matrix is twist-equivalent to the Felder
elliptic R^F-matrix with playing the role of the twist. The
simplest representation of the quantum L-operator algebra corresponding to the
elliptic Ruijsenaars-Schneider model is obtained. The connection of the quantum
L-operator algebra to the fundamental relation RLL=LLR with Belavin's elliptic
R matrix is established. As a byproduct of our construction, we find a new
N-parameter elliptic solution to the classical Yang-Baxter equation.Comment: latex, 29 pages, some misprints are corrected and the meromorphic
version of the quantum L-operator algebra is discusse
Gauge-Invariant Coordinates on Gauge-Theory Orbit Space
A gauge-invariant field is found which describes physical configurations,
i.e. gauge orbits, of non-Abelian gauge theories. This is accomplished with
non-Abelian generalizations of the Poincare'-Hodge formula for one-forms. In a
particular sense, the new field is dual to the gauge field. Using this field as
a coordinate, the metric and intrinsic curvature are discussed for Yang-Mills
orbit space for the (2+1)- and (3+1)-dimensional cases. The sectional, Ricci
and scalar curvatures are all formally non-negative. An expression for the new
field in terms of the Yang-Mills connection is found in 2+1 dimensions. The
measure on Schroedinger wave functionals is found in both 2+1 and 3+1
dimensions; in the former case, it resembles Karabali, Kim and Nair's measure.
We briefly discuss the form of the Hamiltonian in terms of the dual field and
comment on how this is relevant to the mass gap for both the (2+1)- and
(3+1)-dimensional cases.Comment: Typos corrected, more about the non-Abelian decomposition and inner
products, more discussion of the mass gap in 3+1 dimensions. Now 23 page
- âŠ