10,139 research outputs found
Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the Potts model
By relating the ground state of Temperley-Lieb hamiltonians to partition
functions of 2D statistical mechanics systems on a half plane, and using a
boundary Coulomb gas formalism, we obtain in closed form the valence bond
entanglement entropy as well as the valence bond probability distribution in
these ground states. We find in particular that for the XXX spin chain, the
number N_c of valence bonds connecting a subsystem of size L to the outside
goes, in the thermodynamic limit, as = (4/pi^2) ln L, disproving a recent
conjecture that this should be related with the von Neumann entropy, and thus
equal to 1/(3 ln 2) ln L. Our results generalize to the Q-state Potts model.Comment: 4 pages, 2 figure
Rate theory for correlated processes: Double-jumps in adatom diffusion
We study the rate of activated motion over multiple barriers, in particular
the correlated double-jump of an adatom diffusing on a missing-row
reconstructed Platinum (110) surface. We develop a Transition Path Theory,
showing that the activation energy is given by the minimum-energy trajectory
which succeeds in the double-jump. We explicitly calculate this trajectory
within an effective-medium molecular dynamics simulation. A cusp in the
acceptance region leads to a sqrt{T} prefactor for the activated rate of
double-jumps. Theory and numerical results agree
Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture
One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking
On the universality of compact polymers
Fully packed loop models on the square and the honeycomb lattice constitute
new classes of critical behaviour, distinct from those of the low-temperature
O(n) model. A simple symmetry argument suggests that such compact phases are
only possible when the underlying lattice is bipartite. Motivated by the hope
of identifying further compact universality classes we therefore study the
fully packed loop model on the square-octagon lattice. Surprisingly, this model
is only critical for loop weights n < 1.88, and its scaling limit coincides
with the dense phase of the O(n) model. For n=2 it is exactly equivalent to the
selfdual 9-state Potts model. These analytical predictions are confirmed by
numerical transfer matrix results. Our conclusions extend to a large class of
bipartite decorated lattices.Comment: 13 pages including 4 figure
Monte Carlo Study of Short-Range Order and Displacement Effects in Disordered CuAu
The correlation between local chemical environment and atomic displacements
in disordered CuAu alloy has been studied using Monte Carlo simulations based
on the effective medium theory (EMT) of metallic cohesion. These simulations
correctly reproduce the chemically-specific nearest-neighbor distances in the
random alloy across the entire Cu\$_x\$Au\$_{1-x}\$ concentration range. In the
random equiatomic CuAu alloy, the chemically specific pair distances depend
strongly on the local atomic environment (i.e. fraction of like/unlike nearest
neighbors). In CuAu alloy with short-range order, the relationship between
local environment and displacements remains qualitatively similar. However the
increase in short-range order causes the average Cu-Au distance to decrease
below the average Cu-Cu distance, as it does in the ordered CuAuI phase. Many
of these trends can be understood qualitatively from the different neutral
sphere radii and compressibilities of the Cu and Au atoms.Comment: 9 pages, 5 figures, 2 table
Critical exponents of domain walls in the two-dimensional Potts model
We address the geometrical critical behavior of the two-dimensional Q-state
Potts model in terms of the spin clusters (i.e., connected domains where the
spin takes a constant value). These clusters are different from the usual
Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross
and branch. We develop a transfer matrix technique enabling the formulation and
numerical study of spin clusters even when Q is not an integer. We further
identify geometrically the crossing events which give rise to conformal
correlation functions. This leads to an infinite series of fundamental critical
exponents h_{l_1-l_2,2 l_1}, valid for 0 </- Q </- 4, that describe the
insertion of l_1 thin and l_2 thick domain walls.Comment: 5 pages, 3 figures, 1 tabl
Simulations of energetic beam deposition: from picoseconds to seconds
We present a new method for simulating crystal growth by energetic beam
deposition. The method combines a Kinetic Monte-Carlo simulation for the
thermal surface diffusion with a small scale molecular dynamics simulation of
every single deposition event. We have implemented the method using the
effective medium theory as a model potential for the atomic interactions, and
present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to
35 eV. The method is capable of following the growth of several monolayers at
realistic growth rates of 1 monolayer per second, correctly accounting for both
energy-induced atomic mobility and thermal surface diffusion. We find that the
energy influences island and step densities and can induce layer-by-layer
growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag),
which correlates with where the net impact-induced downward interlayer
transport is at a maximum. A high step density is needed for energy induced
layer-by-layer growth, hence the effect dies away at increased temperatures,
where thermal surface diffusion reduces the step density. As part of the
development of the method, we present molecular dynamics simulations of single
atom-surface collisions on flat parts of the surface and near straight steps,
we identify microscopic mechanisms by which the energy influences the growth,
and we discuss the nature of the energy-induced atomic mobility
An Immunohistochemical Method to Study Breast Cancer Cell Subpopulations and Their Growth Regulation by Hormones in Three-Dimensional Cultures
The development of in vitro three-dimensional cell culture matrices offers physiologically relevant alternatives to traditional culture on plastic surfaces. However methods to analyze cell subpopulations therein are poor. Here we present a simple and inexpensive method to analyze cell subpopulations in mixed-cell colonies using standard immunohistochemical (IHC) techniques. Briefly, Matrigel™ blocks are sandwiched between two layers of HistoGel™, hardened by rapid cooling then processed for routine fixation, paraffin embedding, and IHC. We demonstrate the assay using mono- and co-cultured normal human breast, human breast cancer, and transformed mouse stromal cells along with hormone treated breast cancer cells. Judicious selection of specific antibodies allows different cell types within heterotypic colonies to be identified. A brief pulse of bromodeoxyuridine in living colonies allows proliferation of cell subpopulations to be quantified. This simple assay is useful for multiple cell types, species, and conditions
Dislocation Kinks in Copper: Widths, Barriers, Effective Masses, and Quantum Tunneling
We calculate the widths, migration barriers, effective masses, and quantum
tunneling rates of kinks and jogs in extended screw dislocations in copper,
using an effective medium theory interatomic potential. The energy barriers and
effective masses for moving a unit jog one lattice constant are close to
typical atomic energies and masses: tunneling will be rare. The energy barriers
and effective masses for the motion of kinks are unexpectedly small due to the
spreading of the kinks over a large number of atoms. The effective masses of
the kinks are so small that quantum fluctuations will be important. We discuss
implications for quantum creep, kink--based tunneling centers, and Kondo
resonances
- …