1,410 research outputs found
Regression with Linear Factored Functions
Many applications that use empirically estimated functions face a curse of
dimensionality, because the integrals over most function classes must be
approximated by sampling. This paper introduces a novel regression-algorithm
that learns linear factored functions (LFF). This class of functions has
structural properties that allow to analytically solve certain integrals and to
calculate point-wise products. Applications like belief propagation and
reinforcement learning can exploit these properties to break the curse and
speed up computation. We derive a regularized greedy optimization scheme, that
learns factored basis functions during training. The novel regression algorithm
performs competitively to Gaussian processes on benchmark tasks, and the
learned LFF functions are with 4-9 factored basis functions on average very
compact.Comment: Under review as conference paper at ECML/PKDD 201
Physics of dark energy particles
We consider the astrophysical and cosmological implications of the existence
of a minimum density and mass due to the presence of the cosmological constant.
If there is a minimum length in nature, then there is an absolute minimum mass
corresponding to a hypothetical particle with radius of the order of the Planck
length. On the other hand, quantum mechanical considerations suggest a
different minimum mass. These particles associated with the dark energy can be
interpreted as the ``quanta'' of the cosmological constant. We study the
possibility that these particles can form stable stellar-type configurations
through gravitational condensation, and their Jeans and Chandrasekhar masses
are estimated. From the requirement of the energetic stability of the minimum
density configuration on a macroscopic scale one obtains a mass of the order of
10^55 g, of the same order of magnitude as the mass of the universe. This mass
can also be interpreted as the Jeans mass of the dark energy fluid. Furthermore
we present a representation of the cosmological constant and of the total mass
of the universe in terms of `classical' fundamental constants.Comment: 10 pages, no figures; typos corrected, 4 references added; 1
reference added; reference added; entirely revised version, contains new
parts, now 14 page
NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure
We present Se-NMR measurements on single-crystalline FeSe under
pressures up to 2 GPa. Based on the observation of the splitting and broadening
of the NMR spectrum due to structural twin domains, we discovered that static,
local nematic ordering exists well above the bulk nematic ordering temperature,
. The static, local nematic order and the low-energy stripe-type
antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation
rate measurements, are both insensitive to pressure application. These NMR
results provide clear evidence for the microscopic cooperation between
magnetism and local nematicity in FeSe.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev. B rapid
communicatio
Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols
A previous dielectric, near-infrared (NIR), and nuclear magnetic resonance
study on the hydrogen-bonded liquid 2-ethyl-1-hexanol [C. Gainaru et al., Phys.
Rev. Lett. 107, 118304 (2011)] revealed anomalous behavior in various static
quantities near 250 K. To check whether corresponding observations can be made
for other monohydroxy alcohols as well, these experimental methods were applied
to such substances with 5, 6, 7, 8, and 10 carbon atoms in their molecular
backbone. All studied liquids exhibit a change of behavior near 250 K which is
tentatively ascribed to effects of hydrogen bond cooperativity. By analyzing
the NIR band intensities, a linear cluster size is derived that agrees with
estimates from dielectric spectroscopy. All studied alcohols, except
4-methyl-3-heptanol, display a dominant Debye-like peak. Furthermore, neat
2-ethyl-1-butanol exhibits a well resolved structural relaxation in its
dielectric loss spectrum which so far has only been observed for diluted
monohydroxy alcohols.Comment: 39 pages including 12 figure
Chirality in the plane
It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties
- …