205 research outputs found

    Composite Pairings in Chirally Stabilized Critical Fluids

    Full text link
    We study a one-dimensional electron gas in a special antiferromagnetic environment made by two spin-1/2 Heisenberg chains and the one-dimensional two-channel Kondo-Heisenberg lattice away from half-filling. These models flow to an intermediate fixed point which belongs to the universality class of chirally stabilized liquids. Using a Toulouse point approach, the universal properties of the models are determined as well as the identification of the leading instabilities. It is shown that these models exhibit a non-Fermi liquid behavior with strong enhanced composite pairing correlations.Comment: 4 page

    Monte Carlo Calculation of the Spin-Stiffness of the Two-Dimensional Heisenberg Model

    Full text link
    Using a collective-mode Monte Carlo method (the Wolff-Swendsen-Wang algorithm), we compute the spin-stiffness of the two-dimensional classical Heisenberg model. We show that it is the relevant physical quantity to investigate the behaviour of the model in the very low temperature range inaccessible to previous studies based on correlation length and susceptibility calculations.Comment: 6 pages, latex, 3 postscript figures appended, DIM preprint 93-3

    Comment on "Critical properties of highly frustrated pyrochlore antiferromagnets"

    Full text link
    We argue that the analysis of Reimers {\it et al.} [ Phys. Rev. B {\bf 45}, 7295 (1992)] of their Monte Carlo data on the Heisenberg pyrochlore antiferromagnet, which suggests a new universality class, is not conclusive. By re-analysis of their data, we demonstrate asymptotic volume dependence in some thermodynamic quantities, which suggests the possibility that the transition may be first order.Comment: 5 pages (RevTex 3.0), 3 figures available upon request, CRPS-93-0

    Three-Component Fermi Gas in a one-dimensional Optical Lattice

    Full text link
    We investigate the effect of the anisotropy between the s-wave scattering lengths of a three-component atomic Fermi gas loaded into a one-dimensional optical lattice. We find four different phases which support trionic instabilities made of bound states of three fermions. These phases distinguish themselves by the relative phases between the 2kFk_F atomic density waves fluctuations of the three species. At small enough densities or strong anisotropies we give further evidences for a decoupling and the stabilization of more conventional BCS phases. Finally our results are discussed in light of a recent experiment on 6^{6}Li atoms.Comment: 4 pages, published version. Experimental discussion has been extende

    Phases of the generalized two-leg spin ladder: A view from the SU(4) symmetry

    Full text link
    The zero-temperature phases of a generalized two-leg spin ladder with four-spin exchanges are discussed by means of a low-energy field theory approach starting from an SU(4) quantum critical point. The latter fixed point is shown to be a rich multicritical point which unifies different competing dimerized orders and a scalar chirality phase which breaks spontaneously the time-reversal symmetry. The quantum phase transition between these phases is governed by spin-singlet fluctuations and belongs to the Luttinger universality class due to the existence of an exact U(1) self-duality symmetry.Comment: 5 pages, 1 figur

    Spontaneous plaquette formation in the SU(4) Spin-Orbital ladder

    Full text link
    The low-energy properties of the SU(4) spin-orbital model on a two-leg ladder are studied by a variety of analytical and numerical techniques. Like in the case of SU(2) models, there is a singlet-multiplet gap in the spectrum, but the ground-state is two-fold degenerate. An interpretation in terms of SU(4)-singlet plaquettes is proposed. The implications for general two-dimensional lattices are outlined.Comment: 4 pages, 5 Postscript figure
    corecore