524 research outputs found

    High resolution X-ray scattering studies of structural phase transitions in underdoped La2−x_{2-x}Bax_xCuO4_4

    Full text link
    We have studied structural phase transitions in high quality underdoped La2−x_{2-x}Bax_xCuO4_4 single crystals using high resolution x-ray scattering techniques. Critical properties associated with the continuous High Temperature Tetragonal (HTT, I4/mmmI4/mmm) to Middle Temperature Orthorhombic (MTO, CmcaCmca) phase transition were investigated in single crystal samples with x=0.125, 0.095, and 0.08 and we find that all behavior is consistent with three dimensional XY criticality, as expected from theory. Power law behavior in the orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide temperature range, spanning most of the MTO regime in the phase diagram. Low temperature measurements investigating the Low Temperature Tetragonal (LTT, P42/ncmP4_{2}/ncm) phase, below the strongly discontinuous MTO→\toLTT phase transition, in x=0.125 and x=0.095 samples show that the LTT phase is characterized by relatively broad Bragg scattering, compared with that observed at related wavevectors in the HTT phase. This shows that the LTT phase is either an admixture of tetragonal and orthorhombic phases, or that it is orthorhombic with very small orthorhombic strain, consistent with the ``less orthorhombic" low temperature structure previously reported in mixed La2−x_{2-x}Srx−y_{x-y}Bay_yCuO4_4 single crystals. We compare the complex temperature-composition phase diagram for the location of structural and superconducting phase transitions in underdoped La2−x_{2-x}Bax_xCuO4_4 and find good agreement with results obtained on polycrystalline samples.Comment: 8 pages, 7 figures, 1 tabl

    Kondo Insulator: p-wave Bose Condensate of Excitons

    Full text link
    In the Anderson lattice model for a mixed-valent system, the d−fd-f hybridization can possess a pp-wave symmetry. The strongly-correlated insulating phase in the mean-field approximation is shown to be a pp-wave Bose condensate of excitons with a spontaneous lattice deformation. We study the equilibrium and linear response properties across the insulator-metal transition. Our theory supports the empirical correlation between the lattice deformation and the magnetic susceptibility and predicts measurable ultrasonic and high-frequency phonon behavior in mixed-valent semiconductors.Comment: 5 pages, 3 encapsulated PostScript figure

    Stripes and spin-incommensurabilities are favored by lattice anisotropies

    Full text link
    Structural distortions in cuprate materials give a natural origin for anisotropies in electron properties. We study a modified one-band t-J model in which we allow for different hoppings and antiferromagnetic couplings in the two spatial directions (tx≠tyt_x \ne t_y and Jx≠JyJ_x \ne J_y). Incommensurate peaks in the spin structure factor show up only in the presence of a lattice anisotropy, whereas charge correlations, indicating enhanced fluctuations at incommensurate wave vectors, are almost unaffected with respect to the isotropic case.Comment: accepted for publication on Physical Review Letters, one color figur

    Soft phonons and structural phase transitions in La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}

    Full text link
    Soft phonon behavior associated with a structural phase transition from the low-temperature-orthorhombic (LTO) phase (BmabBmab symmetry) to the low-temperature-tetragonal (LTT) phase (P42/ncmP4_{2}/ncm symmetry) was investigated in La1.875_{1.875}Ba0.125_{0.125}CuO4_{4} using neutron scattering. As temperature decreases, the TO-mode at ZZ-point softens and approaches to zero energy around Td2=62T_{\rm d2}=62 K, where the LTO -- LTT transition occurs. Below Td2T_{\rm d2}, the phonon hardens quite rapidly and it's energy almost saturates below 50 K. At Td2T_{\rm d2}, the energy dispersion of the soft phonon along in-plane direction significantly changes while the dispersion along out-of-plane direction is almost temperature independent. Coexistence between the LTO phase and the LTT phase, seen in both the soft phonon spectra and the peak profiles of Bragg reflection, is discussed in context of the order of structural phase transitions.Comment: 6 pages, 8 figure

    Gigantic anisotropic uniaxial pressure effect on superconductivity within the CuO2 plane of La1.64Eu0.2Sr0.16CuO4 - strain control of stripe criticality

    Full text link
    The effect of uniaxial pressure on superconductivity was examined for a high-Tc cuprate La1.64Eu0.2Sr0.16CuO4, which is located at the boundary between the superconducting and stripe phases. We found remarkably large anisotropy of the uniaxial pressure effect not only between the in-plane and out-of-plane pressures but also within the CuO2-plane. When the pressure is applied along the tetragonal [110] direction, we found the largest pressure effect ever observed in cuprates, dTc/dP - 2.5 K/kbar, while the change of Tc was not appreciable when applied along [100]. This substantial in-plane anisotropy is attributed to an intimate link between the symmetry of the one-dimensional stripes and that of the strain produced within the CuO2 plane.Comment: 4 pages including 3 figure

    Coexistence of Band Jahn Teller Distortion and superconductivity in correlated systems

    Full text link
    The co-existence of band Jahn-Teller (BJT) effect with superconductivity (SC) is studied for correlated systems, with orbitally degenerate bands using a simple model. The Hubbard model for a doubly degenerate orbital with the on-site intraorbital Coulomb repulsion treated in the slave boson formalism and the interorbital Coulomb repulsion treated in the Hartree-Fock mean field approximation, describes the correlated system. The model further incorporates the BJT interaction and a pairing term to account for the lattice distortion and superconductivity respectively. It is found that structural distortion tends to suppress superconductivity and when SC sets in at low temperatures, the growth of the lattice distortion is arrested. The phase diagram comprising of the SC and structural transition temperatures TcT_c and TsT_s versus the dopant concentration δ\delta reveals that the highest obtainable TcT_c for an optimum doping is limited by structural transition. The dependence of the occupation probabilities of the different bands as well as the density of states (DOS) in the distorted-superconducting phase, on electron correlation has been discussed.Comment: RevTex, 4 pages, 4 figuers (postscript files attached) Journal Reference : Phys. Rev. B (accepted for publication

    Neutron scattering study of soft phonons and diffuse scattering in insulating La1.95_{1.95}Sr0.05_{0.05}CuO4_{4}

    Full text link
    Soft phonons and diffuse scattering in insulating La2−x_{2-x}Srx_{x}CuO4_4 (x=0.05x=0.05) have been studied by the neutron scattering technique. The X-point phonon softens from high temperature towards the structural transition temperature Ts=410T_{s}=410 K, and the Z-point phonon softens again below 200 K. The Z-point phonon softening persists to low temperature, in contrast to the behavior observed in the superconducting x=0.15x=0.15 compound, in which the Z-point phonon hardens below TcT_c. The diffuse scattering associated with the structural phase transition at 410 K appears at commensurate positions. These results highlight interesting differences between superconducting and insulating samples.Comment: 5 pages, 5 figure

    Path integral Monte Carlo simulations of silicates

    Full text link
    We investigate the thermal expansion of crystalline SiO2_2 in the β\beta-- cristobalite and the β\beta-quartz structure with path integral Monte Carlo (PIMC) techniques. This simulation method allows to treat low-temperature quantum effects properly. At temperatures below the Debye temperature, thermal properties obtained with PIMC agree better with experimental results than those obtained with classical Monte Carlo methods.Comment: 27 pages, 10 figures, Phys. Rev. B (in press

    A theoretical study of the structural phases of Group 5B - 6B metals and their transport properties

    Full text link
    In order to predict the stable and metastable phases of the bcc metals in the block of the Periodic Table defined by groups 5B to 6B and periods 4 to 6, as well as the structure dependence of their transport properties, we have performed full potential computations of the total energies per unit cell as a function of the c/a ratio at constant experimental volume. In all cases, a metastable body centered tetragonal (bct) phase was predicted from the calculations. The total energy differences between the calculated stable and metastable phases ranged from 0.09 eV/cell (vanadium) to 0.39 eV/cell (tungsten). The trends in resistivity as a function of structure and atomic number are discussed in terms of a model of electron transport in metals. Theoretical calculations of the electrical resistivity and other transport properties show that bct phases derived from group 5B elements are more conductive than the corresponding bcc phases, while bct phases formed from group 6B elements are less conductive than the corresponding bcc phases. Special attention is paid to the phases of tantalum where we show that the frequently observed beta phase is not a simple tetragonal distortion of bcc tantalum

    Nature of ege_g Electron Order in La1−x_{1-x}Sr1+x_{1+x}MnO4_4

    Full text link
    Synchrotron x-ray scattering measurements of the low-temperature structure of the single-layer manganese oxide La1−x_{1-x}Sr1+x_{1+x}MnO4_4, over the doping range 0.33≤x≤0.670.33 \le x \le 0.67, indicate the existence of three distinct regions: a disordered phase (x<0.4x < 0.4), a charge-ordered phase (x≥0.5x \ge 0.5), and a mixed phase (0.4≤x0.50.4 \le x 0.5, the modulation vector associated with the charge order is incommensurate with the lattice and depends linearly on the concentration of ege_g electrons. The primary superlattice reflections are strongly suppressed along the modulation direction and the higher harmonics are weak, implying the existence of a largely transverse and nearly sinusoidal structural distortion, consistent with a charge density wave of the ege_g electrons.Comment: 4 pages, 4 figure
    • …
    corecore