2,562 research outputs found

    Induced representations of quantum kinematical algebras

    Full text link
    We construct the induced representations of the null-plane quantum Poincar\'e and quantum kappa Galilei algebras in (1+1) dimensions. The induction procedure makes use of the concept of module and is based on the existence of a pair of Hopf algebras with a nondegenerate pairing and dual bases.Comment: 8 pages,LaTeX2e, to be published in the Proceedings of XXIII International Colloquium on Group-Theoretical Methods in Physics, Dubna (Russia), 31.07--05.08, 200

    Predicting the progress of diffusively limited chemical reactions in the presence of chaotic advection

    Get PDF
    The effects of chaotic advection and diffusion on fast chemical reactions in two-dimensional fluid flows are investigated using experimentally measured stretching fields and fluorescent monitoring of the local concentration. Flow symmetry, Reynolds number, and mean path length affect the spatial distribution and time dependence of the reaction product. A single parameter \lambda*N, where \lambda is the mean Lyapunov exponent and N is the number of mixing cycles, can be used to predict the time-dependent total product for flows having different dynamical features.Comment: 4 pages, 4 figures, updated reference

    Undulatory swimming in fluids with polymer networks

    Full text link
    The motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentrations is systematically investigated in experiments using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65% in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed.Comment: Published 1 November 2013 in Europhysics Letter

    Polymeric filament thinning and breakup in microchannels

    Get PDF
    The effects of elasticity on filament thinning and breakup are investigated in microchannel cross flow. When a viscous solution is stretched by an external immiscible fluid, a low 100 ppm polymer concentration strongly affects the breakup process, compared to the Newtonian case. Qualitatively, polymeric filaments show much slower evolution, and their morphology features multiple connected drops. Measurements of filament thickness show two main temporal regimes: flow- and capillary-driven. At early times both polymeric and Newtonian fluids are flow-driven, and filament thinning is exponential. At later times, Newtonian filament thinning crosses over to a capillary-driven regime, in which the decay is algebraic. By contrast, the polymeric fluid first crosses over to a second type of flow-driven behavior, in which viscoelastic stresses inside the filament become important and the decay is again exponential. Finally, the polymeric filament becomes capillary-driven at late times with algebraic decay. We show that the exponential flow thinning behavior allows a novel measurement of the extensional viscosities of both Newtonian and polymeric fluids.Comment: 7 pages, 7 figure

    Motility of small nematodes in disordered wet granular media

    Full text link
    The motility of the worm nematode \textit{Caenorhabditis elegans} is investigated in shallow, wet granular media as a function of particle size dispersity and area density (ϕ\phi). Surprisingly, we find that the nematode's propulsion speed is enhanced by the presence of particles in a fluid and is nearly independent of area density. The undulation speed, often used to differentiate locomotion gaits, is significantly affected by the bulk material properties of wet mono- and polydisperse granular media for ϕ≥0.55\phi \geq 0.55. This difference is characterized by a change in the nematode's waveform from swimming to crawling in dense polydisperse media \textit{only}. This change highlights the organism's adaptability to subtle differences in local structure and response between monodisperse and polydisperse media

    Induced Representations of Quantum Kinematical Algebras and Quantum Mechanics

    Full text link
    Unitary representations of kinematical symmetry groups of quantum systems are fundamental in quantum theory. We propose in this paper its generalization to quantum kinematical groups. Using the method, proposed by us in a recent paper (olmo01), to induce representations of quantum bicrossproduct algebras we construct the representations of the family of standard quantum inhomogeneous algebras Uλ(isoω(2))U_\lambda(iso_{\omega}(2)). This family contains the quantum Euclidean, Galilei and Poincar\'e algebras, all of them in (1+1) dimensions. As byproducts we obtain the actions of these quantum algebras on regular co-spaces that are an algebraic generalization of the homogeneous spaces and qq--Casimir equations which play the role of qq--Schr\"odinger equations.Comment: LaTeX 2e, 20 page

    Semionotiform fish from the Upper Jurassic of Tendaguru (Tanzania)

    Get PDF

    Representations of Quantum Bicrossproduct Algebras

    Full text link
    We present a method to construct induced representations of quantum algebras having the structure of bicrossproduct. We apply this procedure to some quantum kinematical algebras in (1+1)--dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum kappa Galilei algebra.Comment: LaTeX 2e, 35 page
    • …
    corecore