1,449 research outputs found

    Abstract basins of attraction

    Full text link
    Abstract basins appear naturally in different areas of several complex variables. In this survey we want to describe three different topics in which they play an important role, leading to interesting open problems

    Experimental determination of the frequency and field dependence of Specific Loss Power in Magnetic Fluid Hyperthermia

    Full text link
    Magnetic nanoparticles are promising systems for biomedical applications and in particular for Magnetic Fluid Hyperthermia, a promising therapy that utilizes the heat released by such systems to damage tumor cells. We present an experimental study of the physical properties that influences the capability of heat release, i.e. the Specific Loss Power, SLP, of three biocompatible ferrofluid samples having a magnetic core of maghemite with different core diameter d= 10.2, 14.6 and 19.7 nm. The SLP was measured as a function of frequency f and intensity of the applied alternating magnetic field H, and it turned out to depend on the core diameter, as expected. The results allowed us to highlight experimentally that the physical mechanism responsible for the heating is size-dependent and to establish, at applied constant frequency, the phenomenological functional relationship SLP=cH^x, with 2<x<3 for all samples. The x-value depends on sample size and field frequency/ intensity, here chosen in the typical range of operating magnetic hyperthermia devices. For the smallest sample, the effective relaxation time Teff=19.5 ns obtained from SLP data is in agreement with the value estimated from magnetization data, thus confirming the validity of the Linear Response Theory model for this system at properly chosen field intensity and frequency

    Microfluidics for protein biophysics

    Get PDF
    Microfluidics has the potential to transform experimental approaches across the life sciences. In this review, we discuss recent advances enabled by the development and application of microfluidic approaches to protein biophysics. We focus on areas where key fundamental features of microfluidics open up new possibilities and present advantages beyond low volumes and short time-scale analysis, conventionally provided by microfluidics. We discuss the two most commonly used forms of microfluidic technology, single-phase laminar flow and multiphase microfluidics. We explore how the understanding and control of the characteristic physical features of the microfluidic regime, the integration of microfluidics with orthogonal systems and the generation of well-defined microenvironments can be used to develop novel devices and methods in protein biophysics for sample manipulation, functional and structural studies, detection and material processing

    NMR and ÎĽ+\mu^{+}SR detection of unconventional spin dynamics in Er(trensal) and Dy(trensal) molecular magnets

    Get PDF
    Measurements of proton Nuclear Magnetic Resonance (1H NMR) spectra and relaxation and of Muon Spin Relaxation (μ+\mu^{+}SR) have been performed as a function of temperature and external magnetic field on two isostructural lanthanide complexes, Er(trensal) and Dy(trensal) featuring crystallographically imposed trigonal symmetry. Both the nuclear 1/T1 and muon λ\lambda longitudinal relaxation rates, LRR, exhibit a peak for temperatures T lower than 30K, associated to the slowing down of the spin dynamics, and the width of the NMR absorption spectra starts to increase significantly at T ca. 50K, a temperature sizably higher than the one of the LRR peaks. The LRR peaks have a field and temperature dependence different from those previously reported for all Molecular Nanomagnets. They do not follow the Bloembergen-Purcell-Pound scaling of the amplitude and position in temperature and field and thus cannot be explained in terms of a single dominating correlation time τ\tauc determined by the spin slowing down at low temperature. Further, for T lower than 50K the spectral width does not follow the temperature behavior of the magnetic susceptibility chi. We suggest, using simple qualitative considerations, that the observed behavior is due to a combination of two different relaxation processes characterized by the correlation times τ\tauLT and τ\tauHT, dominating for T lower than 30K and T higher than 50K, respectively. Finally, the observed flattening of LRR for T lower than 5K is suggested to have a quantum origin

    Assessment of the error budget for stratospheric ozone profiles retrieved from OMPS limb scatter measurements

    Get PDF
    This study presents an error budget assessment for the ozone profiles retrieved at the University of Bremen through limb observations of the Ozone Mapper and Profiler Suite – Limb Profiler Suomi National Polar-orbiting Partnership (OMPS-LP SNPP) satellite instrument. The error characteristics are presented in a form that aims at being compliant with the recommendations and the standardizing effort of the Towards Unified Error Reporting (TUNER) project. Besides the retrieval noise, contributions from retrieval parameters are extensively discussed and quantified by using synthetic retrievals performed with the SCIATRAN radiative transfer model. For this investigation, a representative set of OMPS-LP measurements is selected to provide a reliable estimation of the uncertainties as a function of latitude and season. Errors originating from model approximations and spectroscopic data are also taken into account and found to be non-negligible. The choice of the ozone cross section is found to be relevant, as expected. Overall, we classify the estimated errors as random or systematic and investigate correlations between errors from different sources. After summing up the relevant error components, we present an estimate of the total random uncertainty on the retrieved ozone profiles, which is found to be in the 5 %–30 % range in the lower stratosphere, 3 %–5 % in the middle stratosphere, and 5 %–7 % at upper altitudes. The systematic uncertainty is mainly due to cloud contamination and model errors in the lower stratosphere and due to the retrieval bias at higher altitudes. The corresponding total bias exceeds 5 % only above 50 km and below 20 km. After computing the estimate of the overall random and systematic error components, we also provide an ex-post assessment of the uncertainties using self-collocated OMPS-LP observations and collocated Microwave Limb Sounder (MLS) data in a χ2 fashion

    Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia

    Get PDF
    Sarcopenia is an age-related and accelerated process characterized by a progressive loss of muscle mass and strength/function. It is a multifactorial process associated with several adverse outcomes including falls, frailty, functional decline, hospitalization, and mortality. Hence, sarcopenia represents a major public health problem and has become the focus of intense research. Unfortunately, no pharmacological treatments are yet available to prevent or treat this age-related condition. At present, the only strategies for the management of sarcopenia are mainly based on nutritional and physical exercise interventions. The purpose of this review is, thus, to provide an overview on the role of proteins and other key nutrients, alone or in combination with physical exercise, on muscle parameters

    Particle-Based Monte-Carlo Simulations of Steady-State Mass Transport at Intermediate PĂ©clet Numbers

    Get PDF
    Conventional approaches for simulating steady-state distributions of dilute particles under diffusive and advective transport involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at intermediate and high PĂ©clet numbers (Pe>1) swhere traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in predefined detection regions. We demonstrate quantitative agreement of the predicted concentration profiles with the results of experiments performed with fluorescent particles in microfluidic channels under continuous flow. This approach is computationally advantageous and readily allows non-trivial initial distributions to be considered. In particular, this method is highly suitable for simulating advective and diffusive transport in microfluidic devices, for instance in the context of diffusive sizing.Financial support from the Biotechnology and Biological Sciences Research Council (BBSRC), the European Research Council (ERC), the Frances and Augustus Newman Foundation as well as the Swiss National Science Foundation is gratefully acknowledged
    • …
    corecore