8 research outputs found

    Metabolic engineering of the model photoautotrophic cyanobacterium synechocystis for ethanol production: optimization strategies and challenges

    Get PDF
    peer-reviewedPhotoautotrophic ethanol production using model cyanobacteria is an attractive technology that offers potential for sustainable ethanol production as a biofuel. Model strains of Synechocystis PCC6803 have been metabolically engineered to convert central metabolic intermediates such as pyruvate to acetaldehyde via cloned heterologous pyruvate decarboxylase and from acetaldehyde to ethanol via cloned homologous or heterologous alcohol dehydrogenase. While the technology is now proven, strategies are required to increase the ethanol levels through metabolic and genetic engineering and in addition, production and process strategies are required to make the process sustainable. Here we discuss both genetic and molecular strategies in combination with do wnstream strategies that are being applied while also discussing challenges to future application

    New and emerging SXT/R391 integrative conjugative elements as vehicles for stable mobile element transfer and spread of antibiotic resistance in both human and animals.

    Get PDF
    peer-reviewedThe integrative conjugative elements, ICE s SXT and R391 are the prototypes of a group of gram negative integrative elements known as the SXT/R391 group. R391 was identified in a clinical isolate of Providencia in the late 1960 s in South Africa, while SXT was initially isolated in 1992 in a clinical isolate of Vibrio cholerae O139 and variants have since been isolated in pandemic strains throughout the world. Subsequent sequencing of both elements demonstrated a high degree of structural similarity leading to the group being classified as the SXT/R391 group. The SXT/R391 ICE elements are characterised as integrating into a specific chromosomal site within gram ve hosts, being extremely stable and promiscuous and possessing a number of element hotspots for integration of heterologous DNA including increasingly, antibiotic resistance determinants. This makes such ICE s highly adapted for antibiotic spread. New evidence emerging indicates that SXT/R391-like ICE s are increasingly being identified worldwide particularly in Asia not only from Vibrio species, where they have been found widely in human clinical isolates, but from other gram -ve associated infections of domestic animals and fish. Evidence of more such elements may emerge in the future as a new trapping vector pIceCap has been developed to capture them in a circular form, aiding characterisation. The types of the novel ICE s now emerging, their comparison with prototype elements and the antibiotic resistances associated with them are important given their promiscuous nature and stability. PUBLISHEDPeer reviewe

    Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent

    Get PDF
    peer-reviewedThe aim of this study was to analyse R997, the first integrative and conjugative element (ICE) isolated from the Indian Sub-Continent, and to determine its relationship to the SXT/R391 family of ICEs. WGS of Escherichia coli isolate AB1157 (which contains R997) was performed using Illumina sequencing technology. R997 context was assessed by de novo assembly, gene prediction and annotation tools, and compared to other SXT/R391 ICEs. R997 has a size of 85 Kb and harbours 85 ORFs. Within one of the variable regions a HMS-1 β-lactamase resistance gene is located. The Hotspot regions of the element contains restriction digestion systems and insertion sequences. R997 is very closely related to the SXT-like elements from widely dispersed geographic areas. The sequencing of R997 increases the knowledge of the earliest isolated SXT/R391 elements and may provide insight on the emergence of these elements on the Indian sub-continent.PUBLISHEDpeer-reviewe

    Ultrasonic intensification as a tool for enhanced microbial biofuel yields

    Get PDF
    peer-reviewedUltrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. Ultrasonic intensification (periodic ultrasonic treatment during the fermentation process) can result in a more effective homogenization of biomass and faster energy and mass transfer to biomass over short time periods which can result in enhanced microbial growth. Ultrasonic intensification can allow the rapid selective extraction of specific biomass components and can enhance product yields which can be of economic benefit. This review focuses on the role of ultrasonication in the extraction and yield enhancement of compounds from various microbial sources, specifically algal and cyanobacterial biomass with a focus on the production of biofuels. The operating principles associated with the process of ultrasonication and the influence of various operating conditions including ultrasonic frequency, power intensity, ultrasonic duration, reactor designs and kinetics applied for ultrasonic intensification are also described

    SXT/R391 ICE elements encode a novel trap-door strategy for mobile element escape.

    No full text
    Integrative Conjugative Elements (ICEs) are a class of bacterial mobile elements that have the ability to mediate their own integration, excision and transfer from one host genome to another by a mechanism of site-specific recombination, self-circularisation and conjugative transfer. Members of the SXT/R391 ICE family of enterobacterial mobile genetic elements display an unusual UV-inducible sensitisation function which results in stress induced killing of bacterial cells harbouring the ICE. This sensitisation has been shown to be associated with a stress induced overexpression of a mobile element encoded conjugative transfer gene, orf43, a traV homolog. This results in cell lysis and release of a circular form of the ICE. Induction of this novel system may allow transfer of an ICE, enhancing its survival potential under conditions not conducive to conjugative transfer

    Zymobacter palmae pyruvate decarboxylase is Less effective than that of zymomonas mobilis for ethanol production in metabolically engineered synechocystis sp. PCC6803

    Get PDF
    produce bioethanol from model cyanobacteria such as Synechocystis, a two gene cassette consisting of genes encoding pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) are required to transform pyruvate first to acetaldehyde and then to ethanol. However the partition of pyruvate to ethanol comes at a cost, a reduction in biomass and pyruvate availability for other metabolic processes. Hence strategies to divert flux to ethanol as a biofuel in Synechocystis are of interest. PDC from Zymobacter palmae (ZpPDC) has been reported to have a lower Km then the Zymomonas mobilis PDC (ZmPDC), which has traditionally been used in metabolic engineering constructs. The Zppdc gene was combined with the native slr1192 alcohol dehydrogenase gene (adhA) in an attempt to increase ethanol production in the photoautotrophic cyanobacterium Synechocystis sp. PCC 6803 over constructs created with the traditional Zmpdc. Native (Zppdc) and codon optimized (ZpOpdc) versions of the ZpPDC were cloned into a construct where pdc expression was controlled via the psbA2 light inducible promoter from Synechocystis sp. PCC 6803. These constructs were transformed into wildtype Synechocystis sp. PCC 6803 for expression and ethanol production. Ethanol levels were then compared with identical constructs containing the Zmpdc. While strains with the Zppdc (UL071) and ZpOpdc (UL072) constructs did produce ethanol, levels were lower compared to a control strain (UL070) expressing the pdc from Zymomonas mobilis. All constructs demonstrated lower biomass productivity illustrating that the flux from pyruvate to ethanol has a major e ect on biomass and ultimately overall biofuel productivity. Thus the utilization of a PDC with a lower Km from Zymobacter palmae unusually did not result in enhanced ethanol production in Synechocystis sp. PCC 6803
    corecore