119 research outputs found

    Cryogenic Calibration Setup for Broadband Complex Impedance Measurements

    Full text link
    Reflection measurements give access to the complex impedance of a material on a wide frequency range. This is of interest to study the dynamical properties of various materials, for instance disordered superconductors. However reflection measurements made at cryogenic temperature suffer from the difficulty to reliably subtract the circuit contribution. Here we report on the design and first tests of a setup able to precisely calibrate in situ the sample reflection, at 4.2 K and up to 2 GHz, by switching and measuring, during the same cool down, the sample and three calibration standards.Comment: (6 pages, 6 figures

    Ferromagnetic 0-pi Junctions as Classical Spins

    Full text link
    The ground state of highly damped PdNi based 0-pi ferromagnetic Josephson junctions shows a spontaneous half quantum vortex, sustained by a supercurrent of undetermined sign. This supercurrent flows in the electrode of a Josephson junction used as a detector and produces a phi(0)/4 shift in its magnetic diffraction pattern. We have measured the statistics of the positive or negative sign shift occurring at the superconducting transition of such a junction. The randomness of the shift sign, the reproducibility of its magnitude and the possibility of achieving exact flux compensation upon field cooling: all these features show that 0-pi junctions behave as classical spins, just as magnetic nanoparticles with uniaxial anisotropy.Comment: 4 pages, 4 figure

    High-Quality Planar high-Tc Josephson Junctions

    Full text link
    Reproducible high-Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 ?m wide) is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7-? film through a gold mask such as the non-protected part becomes insulating. A lower Tc part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits.Comment: 4 pages, 5 figures, to be published in Applied Physics Letter

    Studi Eksplorasi Minat Beli Mobil Listrik pada Generasi Milenial

    Get PDF
    This study aims to find out what factors that influence the purchase intention of electric vehicles on millennials in Jabodetabek and what factors contribute the most to the purchase intention. The sample and population in this study were 334 millennials in Jabodetabek using the purposive sampling method and distributing questionnaires through various social media platforms. This study uses the theory of TAM and TPB with the analytical method through Exploratory Factor Analysis (EFA) approach and linear regression analysis to process the data through SPSS 25. The result of the study found that there were nine factors that influence the purchase intention of electric cars on millennials in Jabodetabek. The ninth factor is product knowledge, perceived behavioral control, price and advertising, social influence, product perception, environmental concern, ease of use, perceived benefits, and costs. Among the nine factors, price and advertising are the factors that contribute most to the purchase intention. It is hoped that this study can be used by electric car manufacturers as a basis for developing marketing and sales strategies through consumer purchase intention

    Two-dimensional Ising model with competing interactions and its application to clusters and arrays of π\pi-rings and adiabatic quantum computing

    Full text link
    We study planar clusters consisting of loops including a Josephson π\pi-junction (π\pi-rings). Each π\pi-ring carries a persistent current and behaves as a classical orbital moment. The type of particular state associated with the orientation of orbital moments at the cluster depends on the interaction between these orbital moments and can be easily controlled, i.e. by a bias current or by other means. We show that these systems can be described by the two-dimensional Ising model with competing nearest-neighbor and diagonal interactions and investigate the phase diagram of this model. The characteristic features of the model are analyzed based on the exact solutions for small clusters such as a 5-site square plaquette as well as on a mean-field type approach for the infinite square lattice of Ising spins. The results are compared with spin patterns obtained by Monte Carlo simulations for the 100 ×\times 100 square lattice and with experiment. We show that the π\pi-ring clusters may be used as a new type of superconducting memory elements. The obtained results may be verified in experiments and are applicable to adiabatic quantum computing where the states are switched adiabatically with the slow change of coupling constants.Comment: 32 pages, 22 figures, RevTe

    High Tc Josephson nanoJunctions made by ion irradiation : characteristics and reproducibility

    Full text link
    Reproducible High Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge 1 to 5 micrometers wide is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7 film through a gold mask such as the unprotected part becomes insulating. A lower Tc part is then defined within the bridge by irradiating with a much lower dose through a 20 nm wide narrow slit opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. Non hysteretic Resistively Shunted Junction (RSJ) like behavior is observed, together with sinc Fraunhofer patterns for rectangular junctions. The IcRn product varies with temperature ; it can reach a few mV. The typical resistance ranges from 0.1 to a few ohms, and the critical current density can be as high as 30 kA/cm2. The dispersion in characteristics is very low, in the 5% to 10% range. Such nanojunctions have been used to make microSQUIDs (Superconducting Quantum Interference Device) operating at Liquid Nitrogen (LN2) temperature. They exhibit a very small asymmetry, a good sensitivity and a rather low noise. The process is easily scalable to make rather complex Josephson circuits.Comment: 4 pages, 5 figures, Applied Superconductivity Conference Seattle 200

    Interaction-driven quantum phase transition of a single magnetic impurity in Fe(Se,Te)

    Full text link
    Understanding the interplay between individual magnetic impurities and superconductivity is crucial for bottom-up construction of novel phases of matter. For decades, the description by Yu, Shiba and Rusinov (YSR) of single spins in a superconductor and its extension to include quantum effects has proven highly successful: the pair-breaking potential of the spin generates sub-gap electron- and hole excitations that are energetically equidistant from zero. By tuning the energy of the sub-gap states through zero, the impurity screening by the superconductor makes the ground state gain or lose an electron, signalling a parity breaking quantum phase transition. Here we show that in multi-orbital impurities, correlations between the in-gap states can conversely lead to a quantum phase transition where more than one electron simultaneously leave the impurity without significant effect of the screening by the superconductor, while the parity may remain unchanged. This finding implies that the YSR treatment is not always valid, and that intra-atomic interactions, particularly Hund's coupling that favours high spin configurations, are an essential ingredient for understanding the sub-gap states. The interaction-driven quantum phase transition should be taken into account for impurity-based band-structure engineering, and may provide a fruitful basis in the search for novel physics.Comment: Main text and supplementar

    Phase Separation and the Phase Diagram in Cuprates Superconductors

    Full text link
    We show that the main features of the cuprates superconductors phase diagram can be derived considering the disorder as a key property of these materials. Our basic point is that the high pseudogap line is an onset of phase separation which generates compounds made up of regions with distinct doping levels. We calculate how this continuous temperature dependent phase separation process occurs in high critical temperature superconductors (HTSC) using the Cahn-Hilliard approach, originally applied to study alloys. Since the level of phase separation varies for different cuprates, it is possible that different systems with average doping level pm exhibit different degrees of charge and spin segregation. Calculations on inhomogeneous charge distributions in form of stripes in finite clusters performed by the Bogoliubov-deGennes superconducting approach yield good agreement to the pseudogap temperature T*(pm), the onset of local pairing amplitudes with phase locked and concomitantly, how they develop at low temperatures into the superconducting phase at Tc(pm) by percolation.Comment: 9 pages, 9 figures. Submitted to Phys. Rev.

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200
    • …
    corecore