1,604 research outputs found
Detection of liquid xenon scintillation light with a Silicon Photomultiplier
We have studied the feasibility of a silicon photomultiplier (SiPM) to detect
liquid xenon (LXe) scintillation light. The SiPM was operated inside a small
volume of pure LXe, at -95 degree Celsius, irradiated with an internal Am-241
alpha source. The gain of the SiPM at this temperature was estimated to be 1.8
x 10^6 with bias voltage at 52 V. Based on the geometry of the setup, the
quantum efficiency of the SiPM was estimated to be 22% at the Xe wavelength of
178 nm. The low excess noise factor, high single photoelectron detection
efficiency, and low bias voltage of SiPMs make them attractive alternative UV
photon detection devices to photomultiplier tubes (PMTs) for liquid xenon
detectors, especially for experiments requiring a very low energy detection
threshold, such as neutralino dark matter searches
Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon
Scintillation light from gamma ray irradiation in liquid xenon is detected by
two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV
light reflector material, PTFE, is used to optimize the light collection
efficiency. The detector gives a high light yield of 6 photoelectron per keV
(pe/keV), which allows efficient detection of the 122 keV gamma-ray line from
Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best
achievable energy resolution, by removing the instrumental fluctuations, from
liquid xenon scintillation light is estimated to be around 6-8% (sigma) for
gamma-ray with energy between 662 keV and 122 keV
Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber
Scintillation light produced in liquid xenon (LXe) by alpha particles,
electrons and gamma-rays was detected with a large area avalanche photodiode
(LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a
function of applied electric field. We estimate the quantum efficiency of the
LAAPD to be 45%. The best energy resolution from the light measurement at zero
electric field is 7.5%(sigma) for 976 keV internal conversion electrons from
Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector
used for these measurements was also operated as a gridded ionization chamber
to measure the charge yield. We confirm that using a LAAPD in LXe does not
introduce impurities which inhibit the drifting of free electrons.Comment: 13 pages, 8 figure
A New Analysis Method for WIMP searches with Dual-Phase Liquid Xe TPCs
A new data analysis method based on physical observables for WIMP dark matter
searches with noble liquid Xe dual-phase TPCs is presented. Traditionally, the
nuclear recoil energy from a scatter in the liquid target has been estimated by
means of the initial prompt scintillation light (S1) produced at the
interaction vertex. The ionization charge (C2), or its secondary scintillation
(S2), is combined with the primary scintillation in Log(S2/S1) vs. S1 only as a
discrimination parameter against electron recoil background. Arguments in favor
of C2 as the more reliable nuclear recoil energy estimator than S1 are
presented. The new phase space of Log(S1/C2) vs. C2 is introduced as more
efficient for nuclear recoil acceptance and exhibiting superior energy
resolution. This is achieved without compromising the discrimination power of
the LXe TPC, nor its 3D event reconstruction and fiducialization capability, as
is the case for analyses that exploit only the ionization channel. Finally, the
concept of two independent energy estimators for background rejection is
presented: E2 as the primary (based on C2) and E1 as the secondary (based on
S1). Log(E1/E2) vs. E2 is shown to be the most appropriate phase space in which
to evaluate WIMP signal candidates
Design and Performance of the XENON10 Dark Matter Experiment
XENON10 is the first two-phase xenon time projection chamber (TPC) developed
within the XENON dark matter search program. The TPC, with an active liquid
xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground
laboratory (LNGS) in Italy, and operated for more than one year, with excellent
stability and performance. Results from a dark matter search with XENON10 have
been published elsewhere. In this paper, we summarize the design and
performance of the detector and its subsystems, based on calibration data using
sources of gamma-rays and neutrons as well as background and Monte Carlo
simulations data. The results on the detector's energy threshold, energy and
position resolution, and overall efficiency show a performance that exceeds
design specifications, in view of the very low energy threshold achieved (<10
keVr) and the excellent energy resolution achieved by combining the ionization
and scintillation signals, detected simultaneously
Can WIMP Dark Matter overcome the Nightmare Scenario?
Even if new physics beyond the Standard Model (SM) indeed exists, the energy
scale of new physics might be beyond the reach at the Large Hadron Collider
(LHC) and the LHC could find only the Higgs boson but nothing else. This is the
so-called "nightmare scenario". On the other hand, the existence of the dark
matter has been established from various observations. One of the promising
candidates for thermal relic dark matter is a stable and electric
charge-neutral Weakly Interacting Massive Particle (WIMP) with the mass below
the TeV scale. In the nightmare scenario, we introduce a WIMP dark matter
singlet under the SM gauge group, which only couples to the Higgs doublet at
the lowest order, and investigate a possibility that such WIMP dark matter can
be a clue to overcome the nightmare scenario via various phenomenological tests
such as the dark matter relic abundance, the direct detection experiments for
the dark matter particle, and the production of the dark matter particle at the
LHC.Comment: 14 pages, 10 figure
Constraints on Scalar Phantoms
We update the constraints on the minimal model of dark matter, where a stable
real scalar field is added to the standard model Lagrangian with a
renormalizable coupling to the Higgs field. Once we fix the dark matter
abundance, there are only two relevant model parameters, the mass of the scalar
field and that of the Higgs boson. The recent data from the CDMS II experiment
have excluded a parameter region where the scalar field is light such as less
than about 50 GeV. In a large parameter region, the consistency of the model
can be tested by the combination of future direct detection experiments and the
LHC experiments.Comment: 7 pages, 1 figur
(Un)balanced Holographic Superconductors with Electric and Spin Motive Force Coupling
We study holographic phase transitions in (2+1) dimensions that possess interacting phases which result from a direct coupling between the two U(1) gauge fields. This can be interpreted as a non-minimal interaction between the electric and spin motive forces of the dual model. We first present a new analytical solution of the Einstein-Maxwell equations that describes a black hole with charge non-equivalent to the sum of the asymptotic charges of the two U(1) gauge fields and briefly discuss formation of uncharged scalar hair on this solution. We then study the formation of charged scalar hair on an uncharged black hole background and discuss the dual description of balanced as well as unbalanced superconductors
Spectroscopy and Imaging Performance of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)
LXeGRIT is a balloon-borne Compton telescope based on a liquid xenon time
projection chamber (LXeTPC) for imaging cosmic \g-rays in the energy band of
0.2-20 MeV. The detector, with 400 cm area and 7 cm drift gap, is filled
with high purity LXe. Both ionization and scintillation light signals are
detected to measure the energy deposits and the three spatial coordinates of
individual \g -ray interactions within the sensitive volume. The TPC has been
characterized with repeated measurements of its spectral and Compton imaging
response to \g -rays from radioactive sources such as \na, \cs, \yt and Am-Be.
The detector shows a linear response to \g -rays in the energy range 511 keV
-4.4 MeV, with an energy resolution (FWHM) of \Delta E/E=8.8% \: \sqrt{1\MeV
/E}. Compton imaging of \yt \g -ray events with two detected interactions is
consistent with an angular resolution of 3 degrees (RMS) at 1.8 MeV.Comment: To appear in: Hard X-Ray, Gamma-Ray and Neutron Detector Physics XI,
2000; Proc. SPIE, vol. 4140; K.A. Flanagan & O.H. Siegmund, ed
- …