33 research outputs found

    Biodistribution of intravitreal lenadogene nolparvovec gene therapy in nonhuman primates

    Get PDF
    Lenadogene nolparvovec (Lumevoq) gene therapy was developed to treat Leber hereditary optic neuropathy (LHON) caused by the m.11778G > A in MT-ND4 that affects complex I of the mitochondrial respiratory chain. Lenadogene nolparvovec is a replication-defective, single-stranded DNA recombinant adeno-associated virus vector 2 serotype 2, containing a codon-optimized complementary DNA encoding the human wild-type MT-ND4 subunit protein. Lenadogene nolparvovec was administered by unilateral intravitreal injection in MT-ND4 LHON patients in two randomized, double-masked, and sham-controlled phase III clinical trials (REVERSE and RESCUE), resulting in bilateral improvement of visual acuity. These and other earlier results suggest that lenadogene nolparvovec may travel from the treated to the untreated eye. To investigate this possibility further, lenadogene nolparvovec was unilaterally injected into the vitreous body of the right eye of healthy, nonhuman primates. Viral vector DNA was quantifiable in all eye and optic nerve tissues of the injected eye and was detected at lower levels in some tissues of the contralateral, noninjected eye, and optic projections, at 3 and 6 months after injection. The results suggest that lenadogene nolparvovec transfers from the injected to the noninjected eye, thus providing a potential explanation for the bilateral improvement of visual function observed in the LHON patients

    Absence of lenadogene nolparvovec DNA in a brain tumor biopsy from a patient in the REVERSE clinical study, a case report

    Get PDF
    Background: Leber Hereditary Optic Neuropathy (LHON) is a rare, maternally-inherited mitochondrial disease that primarily affects retinal ganglion cells (RGCs) and their axons in the optic nerve, leading to irreversible, bilateral severe vision loss. Lenadogene nolparvovec gene therapy was developed as a treatment for patients with vision loss from LHON caused by the most prevalent m.11778G > A mitochondrial DNA point mutation in the MT-ND4 gene. Lenadogene nolparvovec is a replication-defective recombinant adeno-associated virus vector 2 serotype 2 (AAV2/2), encoding the human wild-type MT-ND4 protein. Lenadogene nolparvovec was administered by intravitreal injection (IVT) in LHON patients harboring the m.11778G > A ND4 mutation in a clinical development program including one phase 1/2 study (REVEAL), three phase 3 pivotal studies (REVERSE, RESCUE, REFLECT), and one long-term follow-up study (RESTORE, the follow-up of REVERSE and RESCUE patients). Case presentation: A 67-year-old woman with MT-ND4 LHON, included in the REVERSE clinical study, received a unilateral IVT of lenadogene nolparvovec in the right eye and a sham injection in the left eye in May 2016, 11.4 months and 8.8 months after vision loss in her right and left eyes, respectively. The patient had a normal brain magnetic resonance imaging with contrast at the time of diagnosis of LHON. Two years after treatment administration, BCVA had improved in both eyes. The product was well tolerated with mild and resolutive anterior chamber inflammation in the treated eye. In May 2019, the patient was diagnosed with a right temporal lobe glioblastoma, IDH-wildtype, World Health Organization grade 4, based on histological analysis of a tumor excision. The brain tumor was assessed for the presence of vector DNA by using a sensitive validated qPCR assay targeting the ND4 sequence of the vector. Conclusion: ND4 DNA was not detected (below 15.625 copies/ÎĽg of genomic DNA) in DNA extracted from the brain tumor, while a housekeeping gene DNA was detected at high levels. Taken together, this data shows the absence of detection of lenadogene nolparvovec in a brain tumor (glioblastoma) of a treated patient in the REVERSE clinical trial 3 years after gene therapy administration, supporting the long-term favorable safety of lenadogene nolparvovec

    Influence structurale d'une chaîne conjuguée sur les déplacements chimiques des protons vinyliques

    No full text
    La description des effets de structure sur les déplacements chimiques de protons vinyliques est recherchée pour 5 populations d'aryl-alcènes substitués définis par le foyer commun (F) et soumis à des contraintes stériques, au moyen de la relation Δδ = - 600 πr,sαx précédemment établie dans le cas de systèmes conjugués plans.[math]L'existence de corrélations linéaires (Δδ', αx) entre les valeurs réduites de déplacements chimiques (après correction des effets de champ ou d'anisotropie magnétique des liaisons) et les constantes de substituants αx établit l'indépendance des paramètres d'action (αx) et de structure (π) traduisant la sensibilité de la chaîne aux perturbations.Ce résultat indique qu'à l'intérieur de chaque population les effets électroniques des substituants portés par les noyaux aromatiques ne modifient pas sensiblement la géométrie; celle-ci semble donc dépendre uniquement des répulsions stériques dues aux groupes portés par les positions ortho des noyaux et par le carbone β.En outre, à l'intérieur de chaque population une additivité stricte des influences électroniques dues aux substitutions apparaît, au contraire des résultats obtenus en cinétique de bromation.Les pentes de ces corrélations (Δδ', αx) permettent alors par le biais des polarisabilités atome-atome de chiffrer la torsion de chacun des cycles aromatiques par rapport au plan de la double liaison éthylénique.La généralisation du modèle utilisé ouvre ainsi une voie d'accès nouvelle aux problèmes de répartition de charges et de conformation dans l'état fondamental lors d'études structurales RMN

    Distribution and functional characterization of pituitary adenylate cyclase-activating polypeptide receptors in the brain of non-human primates.

    No full text
    International audienceThe distribution and density of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites have been investigated in the brain of the primates Jacchus callithrix (marmoset) and Macaca fascicularis (macaque) using [(125)I]-PACAP27 as a radioligand. PACAP binding sites were widely expressed in the brain of these two species with particularly high densities in the septum, hypothalamus and habenula. A moderate density of recognition sites was seen in all subdivisions of the cerebral cortex with a heterogenous distribution, the highest concentrations occurring in layers I and VI while the underlying white matter was almost devoid of binding sites. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed intense expression of the mRNAs encoding the short and hop-1 variants of pituitary adenylate cyclase-activating polypeptide-specific receptor (PAC1-R) in the cortex of both marmoset and macaque, whereas vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide mutual receptor, subtype 1 (VPAC1-R) and vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide mutual receptor, subtype 2 (VPAC2-R) mRNAs were expressed at a much lower level. In situ hybridization histochemistry showed intense expression of PAC1-R and weak expression of VPAC1-R mRNAs in layer IV of the cerebral cortex. Incubation of cortical tissue slices with PACAP induced a dose-dependent stimulation of cyclic AMP formation, indicating that PACAP binding sites correspond to functional receptors. Moreover, treatment of primate cortical slices with 100 nM PACAP significantly reduced the activity of caspase-3, a key enzyme of the apoptotic cascade. The present results indicate that PACAP should exert the same neuroprotective effect in the brain of primates as in rodents and suggest that PAC1-R agonists may have a therapeutic value to prevent neuronal cell death after stroke or in specific neurodegenerative diseases

    Repeated-Dose Toxicity, Biodistribution, and Shedding Assessments With a ChAd155 Respiratory Syncytial Virus Vaccine Candidate Evaluated in Rabbits and Rats

    No full text
    Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections (LRTI) in infants, and toddlers and vaccines are not yet available. A pediatric RSV vaccine (ChAd155-RSV) is being developed to protect infants against RSV disease. The ChAd155-RSV vaccine consists of a recombinant replication-deficient chimpanzee-derived adenovirus (ChAd) group C vector engineered to express the RSV antigens F, N, and M2-1. The local and systemic effects of three bi-weekly intramuscular injections of the ChAd155-RSV vaccine was tested in a repeated-dose toxicity study in rabbits. After three intramuscular doses, the ChAd155-RSV vaccine was considered well-tolerated. Changes due to the vaccine-elicited inflammatory reaction/immune response were observed along with transient decreases in platelet count without physiological consequences, already reported for other adenovirus-based vaccines. In addition, the biodistribution and shedding of ChAd155-RSV were also characterized in two studies in rats. The distribution and persistence of the ChAd155-RSV vaccine candidate was consistent with other similar adenovector-based vaccines, with quantifiable levels of ChAd155-RSV observed at the injection site (muscle) and the draining lymph nodes up to 69 days post administration. The shedding results demonstrated that ChAd155-RSV was generally not detectable in any secretions or excreta samples. In conclusion, the ChAd155-RSV vaccine was well-tolerated locally and systemically
    corecore