7 research outputs found

    Characterization of MgtC, a Virulence Factor of Salmonella enterica Serovar Typhi

    Get PDF
    The MgtC is a virulence factor in Salmonella Typhimurium that is required for growth at low-Mg2+ concentrations and intramacrophage survival. This gene is codified in a conserved region of the Salmonella pathogenicity island 3 (SPI-3), and is also present in the chromosome of other Salmonella serovars. In this study we characterized the MgtC factor in S. Typhi, a human specific pathogen, by using mgtC and SPI-3 mutant strains. We found that MgtC is the most important factor codified in the SPI-3 of S. Typhi for growth in low-Mg2+ media and survival within human cells. In addition, by using reporter genes we determined that the low-Mg2+ concentration, acidic media and PhoP regulator induce mgtC expression in S. Typhi. We suggest that MgtC is the most important virulence factor codified in the SPI-3 of S. Typhi

    Characterization of Salmonella enterica Serovar Typhimurium and Monophasic Salmonella Serovar 1,4,[5],12:i:- Isolates in Thailand

    No full text
    Duplex PCR was developed to screen Salmonella enterica serovar Typhimurium phage type DT104 and related strains in Thailand because a phage typing laboratory of serovar Typhimurium is not available. Of 46 isolates of serovar Typhimurium and 32 isolates of S. enterica serovar 1,4,[5],12:i:-, 15 (33%) and 30 (94%) were duplex PCR positive, respectively. All isolates were submitted for phage typing to analyze the specificity of the PCR assay. Among serovar Typhimurium isolates that yielded positive duplex PCRs, only seven isolates were phage types DT104 or U302, and eight isolates were undefined types, whereas the negative PCR isolates were either other phage types, including DT7, DT12, DT66, DT79, DT166, DT170, DT193, and DT208 or an undefined type. The serovar Typhimurium and serovar 1,4,[5],12:i:- isolates that were duplex PCR positive were further subtyped by using XbaI PFGE to reveal their genetic relatedness. All serovar Typhimurium phage type DT104 strains had indistinguishable chromosomal patterns. The isolates of phage type U302 and most of the serovar 1,4,[5],12:i:- isolates that were duplex PCR positive yielded similar pulsed-field gel electrophoresis patterns. The patterns of PCR-negative isolates distinctly differed from the patterns of PCR-positive isolates. A total of 26% of all isolates had a dominant R-type ACSSuTG that was not found in the isolates of phage type DT104

    The Xylella fastidosa RTX operons: evidence for the evolution of protein mosaics through novel genetic exchanges

    No full text
    Background: Xylella fastidiosa (Xf) is a gram negative bacterium inhabiting the plant vascular system. In most species this bacterium lives as a benign symbiote, but in several agriculturally important plants (e.g. coffee, citrus, grapevine) Xf is pathogenic. Xf has four loci encoding homologues to hemolysin RTX proteins, virulence factors involved in a wide range of plant pathogen interactions. [br/] Results: We show that all four genes are expressed during pathogenesis in grapevine. The sequences from these four genes have a complex repetitive structure. At the C-termini, sequence diversity between strains is what would be expected from orthologous genes. However, within strains there is no N-terminal homology, indicating these loci encode RTXs of different functions and/or specificities. More striking is that many of the orthologous loci between strains share this extreme variation at the N-termini. Thus these RTX orthologues are most easily visualized as fusions between the orthologous C-termini and different N-termini. Further, the four genes are found in operons having a peculiar structure with an extensively duplicated module encoding a small protein with homology to the N-terminal region of the full length RTX. Surprisingly, some of these small peptides are most similar not to their corresponding full length RTX, but to the N-termini of RTXs from other Xf strains, and even other remotely related species. [br/] Conclusions: These results demonstrate that these genes are expressed in planta during pathogenesis. Their structure suggests extensive evolutionary restructuring through horizontal gene transfers and heterologous recombination mechanisms. The sum of the evidence suggests these repetitive modules are a novel kind of mobile genetic element

    Molecular Techniques of Detection and Discrimination of Foodborne Pathogens and Their Toxins

    No full text

    Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing

    No full text
    corecore