33 research outputs found

    Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype

    Get PDF
    The LIM homeodomain family of transcription factors is involved in many processes in the developing CNS, ranging from cell fate specification to connectivity. A member of this family of transcription factors, lhx6, is expressed in the medial ganglionic eminence(MGE) of the ventral telencephalon, where the vast majority of cortical interneurons are generated. Its expression in the GABA-containing MGE cells that migrate to the cortex suggests that this gene uniquely or in combination with other transcription factors may play a role in the neurochemical identity and migration of these neurons. We performed loss of function studies for lhx6 in mouse embryonic day 13.5 brain slices and dissociated MGE neuronal cultures using Lhx6-targeted small interfering RNA produced by a U6 promoter-driven vector. We found that silencing lhx6 impeded the tangential migration of interneurons into the cortex, although it did not obstruct their dispersion within the ganglionic eminence. Blocking lhx6 expression in dissociated MGE cultured neurons did not interfere with the production of GABA or its synthesizing enzyme. These results indicate that lhx6, unlike the closely related member lhx7, does not regulate neurotransmitter choice in interneurons but plays an important role in their migration from the ventral telencephalon to the neocortex

    Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2.

    Get PDF
    BACKGROUND: It is becoming increasingly evident that deficits in the cortex and hippocampus at early stages of dementia in Alzheimer's disease (AD) are associated with synaptic damage caused by oligomers of the toxic amyloid-β peptide (Aβ42). However, the underlying molecular and cellular mechanisms behind these deficits are not fully understood. Here we provide evidence of a mechanism by which Aβ42 affects synaptic transmission regulating neurotransmitter release. METHODOLOGY/FINDINGS: We first showed that application of 50 nM Aβ42 in cultured neurones is followed by its internalisation and translocation to synaptic contacts. Interestingly, our results demonstrate that with time, Aβ42 can be detected at the presynaptic terminals where it interacts with Synaptophysin. Furthermore, data from dissociated hippocampal neurons as well as biochemical data provide evidence that Aβ42 disrupts the complex formed between Synaptophysin and VAMP2 increasing the amount of primed vesicles and exocytosis. Finally, electrophysiology recordings in brain slices confirmed that Aβ42 affects baseline transmission. CONCLUSIONS/SIGNIFICANCE: Our observations provide a necessary and timely insight into cellular mechanisms that underlie the initial pathological events that lead to synaptic dysfunction in Alzheimer's disease. Our results demonstrate a new mechanism by which Aβ42 affects synaptic activity

    Neuronal migration and ventral subtype identity in the telencephalon depend on SOX1

    Get PDF
    Little is known about the molecular mechanisms and intrinsic factors that are responsible for the emergence of neuronal subtype identity. Several transcription factors that are expressed mainly in precursors of the ventral telencephalon have been shown to control neuronal specification, but it has been unclear whether subtype identity is also specified in these precursors, or if this happens in postmitotic neurons, and whether it involves the same or different factors. SOX1, an HMG box transcription factor, is expressed widely in neural precursors along with the two other SOXB1 subfamily members, SOX2 and SOX3, and all three have been implicated in neurogenesis. SOX1 is also uniquely expressed at a high level in the majority of telencephalic neurons that constitute the ventral striatum (VS). These neurons are missing in Sox1-null mutant mice. In the present study, we have addressed the requirement for SOX1 at a cellular level, revealing both the nature and timing of the defect. By generating a novel Sox1-null allele expressing β-galactosidase, we found that the VS precursors and their early neuronal differentiation are unaffected in the absence of SOX1, but the prospective neurons fail to migrate to their appropriate position. Furthermore, the migration of non-Sox1-expressing VS neurons (such as those expressing Pax6) was also affected in the absence of SOX1, suggesting that Sox1-expressing neurons play a role in structuring the area of the VS. To test whether SOX1 is required in postmitotic cells for the emergence of VS neuronal identity, we generated mice in which Sox1 expression was directed to all ventral telencephalic precursors, but to only a very few VS neurons. These mice again lacked most of the VS, indicating that SOX1 expression in precursors is not sufficient for VS development. Conversely, the few neurons in which Sox1 expression was maintained were able to migrate to the VS. In conclusion, Sox1 expression in precursors is not sufficient for VS neuronal identity and migration, but this is accomplished in postmitotic cells, which require the continued presence of SOX1. Our data also suggest that other SOXB1 members showing expression in specific neuronal populations are likely to play continuous roles from the establishment of precursors to their final differentiation

    Attenuating the DNA damage response to double strand breaks restores function in models of CNS neurodegeneration

    Get PDF
    DNA double-strand breaks are a feature of many acute and long-term neurological disorders, including neurodegeneration, following neurotrauma and after stroke. Persistent activation of the DNA damage response in response to double strand breaks contributes to neural dysfunction and pathology as it can force post-mitotic neurons to re-enter the cell cycle leading to senescence or apoptosis. Mature, non-dividing neurons may tolerate low levels of DNA damage, in which case muting the DNA damage response might be neuroprotective. Here, we show that attenuating the DNA damage response by targeting the meiotic recombination 11, Rad50, Nijmegen breakage syndrome 1 complex, which is involved in double strand break recognition, is neuroprotective in three neurodegeneration models in Drosophila and prevents Aβ1-42-induced loss of synapses in embryonic hippocampal neurons. Attenuating the DNA damage response after optic nerve injury is also neuroprotective to retinal ganglion cells and promotes dramatic regeneration of their neurites both in vitro and in vivo. Dorsal root ganglion neurons similarly regenerate when the DNA damage response is targeted in vitro and in vivo and this strategy also induces significant restoration of lost function after spinal cord injury. We conclude that muting the DNA damage response in the nervous system is neuroprotective in multiple neurological disorders. Our results point to new therapies to maintain or repair the nervous system

    Restricted expression of Slap-1 in the rodent cerebral cortex.

    Full text link
    The deep layers of the mammalian cerebral cortex contain pyramidal neurons that project predominantly to subcortical targets. To understand the mechanisms that determine the identity of deeper layer neurons, a PCR based subtractive hybridisation was performed to isolate genes that are specifically expressed during the specification of these neurons. One of the genes we isolated was the rat homologue of the mouse Slap-1. SLAP-1 is an adaptor protein containing SH2-SH3 domains and it participates in the signalling of Receptor Tyrosine Kinases. In situ hybridisation studies have shown that Slap-1 is not substantially expressed before E17. At later stages, it is specifically and selectively expressed by deeper layer neurons and by neurons of layers II/III in the developing cortex. The specific timing and location of its expression, suggests that this gene may play a role in the differentiation of these neurons

    A novel mode of tangential migration of cortical projection neurons

    Get PDF
    Projection neurons of the developing cerebral cortex are generated in the cerebral ventricular zone and subsequently move to the developing cortical plate via radial migration. Conversely, most inhibitory interneurons originate in the ganglionic eminences and enter the developing cortical plate by tangential migration. Using immunohistochemical analysis together with tracer labeling experiments in organotypic brain slices, we show that a portion of cortical projection neurons migrates tangentially over long distances. Lineage analysis revealed that these neurons are derived from Emx1+ cortical progenitors and express the transcription factor Satb2 but do not express GABA or Olig1. In vitro and in vivo analysis of reeler mutant brains demonstrated that although reeler mutation does not influence tangential migration of interneurons, it affects the tangential migration of cortical projection neurons. (c) 2006 Elsevier Inc. All rights reserved
    corecore