8,556 research outputs found
The International Criminal Court: Possibilities for Prosecutorial Abuse
The attempt to create an international criminal court assumes that in all important ways the international legal order is similar to the municipal legal orders with which US citizens are familiar, but with regard to the criminal law, that assumption is simply not true. Rubin discusses two potential fundamental discrepancies between the international legal order and an hypothesized typical municipal legal order as would exist under the current statute for the International Criminal Court
1957 survey of consumer finances: housing and durable goods
Consumer surveys ; Housing
Empirical evidence on inflation and unemployment in the long run
We examine the relationship between inflation and unemployment in the long run, using quarterly US data from 1952 to 2010. Using a band-pass filter approach, we find strong evidence that a positive relationship exists, where inflation leads unemployment by some 3 to 3 1/2 years, in cycles that last from 8 to 25 or 50 years. Our statistical approach is atheoretical in nature, but provides evidence in accordance with the predictions of Friedman (1977) and the recent New Monetarist model of Berentsen, Menzio, and Wright (2011): the relationship between inflation and unemployment is positive in the long run.Inflation, Unemployment, Long-Run Phillips Curve
Problems of the rotating-torsion-balance limit on the photon mass
We discuss the problems (and the promise) of the ingenious method introduced
by Lakes, and recently improved on by Luo, to detect a possible small photon
mass by measuring the ambient magnetic vector potential from large scale
magnetic fields. We also point out how an improved ``indirect'' limit can be
obtained using modern measurements of astrophysical magnetic fields and plasmas
and that a good ``direct'' limit exists using properties of the solar wind.Comment: 4 pages, revised title and content
Covariant spectator theory of quark-antiquark bound states: Mass spectra and vertex functions of heavy and heavy-light mesons
We use the covariant spectator theory with an effective quark-antiquark
interaction, containing Lorentz scalar, pseudoscalar, and vector contributions,
to calculate the masses and vertex functions of, simultaneously, heavy and
heavy-light mesons. We perform least-square fits of the model parameters,
including the quark masses, to the meson spectrum and systematically study the
sensitivity of the parameters with respect to different sets of fitted data. We
investigate the influence of the vector confining interaction by using a
continuous parameter controlling its weight. We find that vector contributions
to the confining interaction between 0% and about 30% lead to essentially the
same agreement with the data. Similarly, the light quark masses are not very
tightly constrained. In all cases, the meson mass spectra calculated with our
fitted models agree very well with the experimental data. We also calculate the
mesons wave functions in a partial wave representation and show how they are
related to the meson vertex functions in covariant form.Comment: 23 pages, 10 figures. Minor corrections of previous version. To be
published in Phys. Rev.
Singularity-free two-body equation with confining interactions in momentum space
We are developing a covariant model for all mesons that can be described as
quark-antiquark bound states in the framework of the Covariant Spectator Theory
(CST) in Minkowski space. The kernel of the bound-state equation contains a
relativistic generalization of a linear confining potential which is singular
in momentum space and makes its numerical solution more difficult. The same
type of singularity is present in the momentum-space Schr\"odinger equation,
which is obtained in the nonrelativistic limit. We present an alternative,
singularity-free form of the momentum-space Schr\"odinger equation which is
much easier to solve numerically and which yields accurate and stable results.
The same method will be applied to the numerical solution of the CST
bound-state equations.Comment: 4 pages, 2 figures, talk presented at the 22nd European Conference on
Few-Body Problems in Physics (EFB22), Krakow, Poland, 9 - 13 September 201
Application of the Covariant Spectator Theory to the study of heavy and heavy-light mesons
As an application of the Covariant Spectator Theory (CST) we calculate the
spectrum of heavy-light and heavy-heavy mesons using covariant versions of a
linear confining potential, a one- gluon exchange, and a constant interaction.
The CST equations possess the correct one-body limit and are therefore
well-suited to describe mesons in which one quark is much heavier than the
other. We find a good fit to the mass spectrum of heavy-light and heavy-heavy
mesons with just three parameters (apart from the quark masses). Remarkably,
the fit parameters are nearly unchanged when we fit to experimental
pseudoscalar states only or to the whole spectrum. Because pseudoscalar states
are insensitive to spin-orbit interactions and do not determine spin-spin
interactions separately from central interactions, this result suggests that it
is the covariance of the kernel that correctly predicts the spin-dependent
quark-antiquark interaction
Confinement, quark mass functions, and spontaneous chiral symmetry breaking in Minkowski space
We formulate the covariant equations for quark-antiquark bound states in
Minkowski space in the framework of the Covariant Spectator Theory. The quark
propagators are dressed with the same kernel that describes the interaction
between different quarks. We show that these equations are charge-conjugation
invariant, and that in the chiral limit of vanishing bare quark mass, a
massless pseudoscalar bound state is produced in a Nambu-Jona-Lasinio (NJL)
mechanism, which is associated with the Goldstone boson of spontaneous chiral
symmetry breaking. In this introductory paper, we test the formalism by using a
simplified kernel consisting of a momentum-space delta-function with a vector
Lorentz structure, to which one adds a mixed scalar and vector confining
interaction. The scalar part of the confining interaction is not chirally
invariant by itself, but decouples from the equations in the chiral limit and
therefore allows the NJL mechanism to work. With this model we calculate the
quark mass function, and we compare our Minkowski-space results to lattice QCD
data obtained in Euclidean space. In a companion paper, we apply this formalism
to a calculation of the pion form factor.Comment: 17 pages, 12 figures, version published in Phys. Rev.
Pion electromagnetic form factor in the Covariant Spectator Theory
The pion electromagnetic form factor at spacelike momentum transfer is
calculated in relativistic impulse approximation using the Covariant Spectator
Theory. The same dressed quark mass function and the equation for the pion
bound-state vertex function as discussed in the companion paper are used for
the calculation, together with a dressed quark current that satisfies the
Ward-Takahashi identity. The results obtained for the pion form factor are in
agreement with experimental data, they exhibit the typical monopole behavior at
high-momentum transfer, and they satisfy some remarkable scaling relations.Comment: 11 pages, 8 figures, version published in Phys. Rev.
- …