5 research outputs found

    Pressure overload by transverse aortic constriction induces maladaptive hypertrophy in a titin-truncated mouse model

    Full text link
    Mutations in the giant sarcomeric protein titin (TTN) are a major cause for inherited forms of dilated cardiomyopathy (DCM). We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC) in heterozygous (Het) Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p < 0.05), while wild-type (WT) TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure

    Personalized Medicine Approach in a DCM Patient with LMNA Mutation Reveals Dysregulation of mTOR Signaling

    No full text
    Background: Mutations in the Lamin A/C (LMNA) gene are responsible for about 6% of all familial dilated cardiomyopathy (DCM) cases which tend to present at a young age and follow a fulminant course. Methods: We report a 47-year-old DCM patient with severely impaired left ventricular ejection fraction and NYHA functional class IV despite optimal heart failure treatment. Whole-exome sequencing revealed an LMNA E161K missense mutation as the pathogenetic cause for DCM in this patient. We generated a patient-specific LMNA-knock in (LMNA-KI) in vitro model using mES cells. Results: Beta adrenergic stimulation of cardiomyocytes derived from LMNA-KI mES cells resulted in augmented mTOR signaling and increased dysregulation of action potentials, which could be effectively prevented by the mTOR-inhibitor rapamycin. A cardiac biopsy confirmed strong activation of the mTOR-signaling pathway in the patient. An off-label treatment with oral rapamycin was initiated and resulted in an improvement in left ventricular ejection fraction (27.8% to 44.5%), NT-BNP (8120 ng/L to 2210 ng/L) and NYHA functional class. Conclusion: We have successfully generated the first in vitro model to recapitulate a patient-specific LMNA E161K mutation which leads to a severe form of DCM. The model may serve as a template for individualized and specific treatment of heart failure

    Personalized Medicine Approach in a DCM Patient with LMNA Mutation Reveals Dysregulation of mTOR Signaling

    No full text
    Background: Mutations in the Lamin A/C (LMNA) gene are responsible for about 6% of all familial dilated cardiomyopathy (DCM) cases which tend to present at a young age and follow a fulminant course. Methods: We report a 47-year-old DCM patient with severely impaired left ventricular ejection fraction and NYHA functional class IV despite optimal heart failure treatment. Whole-exome sequencing revealed an LMNA E161K missense mutation as the pathogenetic cause for DCM in this patient. We generated a patient-specific LMNA-knock in (LMNA-KI) in vitro model using mES cells. Results: Beta adrenergic stimulation of cardiomyocytes derived from LMNA-KI mES cells resulted in augmented mTOR signaling and increased dysregulation of action potentials, which could be effectively prevented by the mTOR-inhibitor rapamycin. A cardiac biopsy confirmed strong activation of the mTOR-signaling pathway in the patient. An off-label treatment with oral rapamycin was initiated and resulted in an improvement in left ventricular ejection fraction (27.8% to 44.5%), NT-BNP (8120 ng/L to 2210 ng/L) and NYHA functional class. Conclusion: We have successfully generated the first in vitro model to recapitulate a patient-specific LMNA E161K mutation which leads to a severe form of DCM. The model may serve as a template for individualized and specific treatment of heart failure
    corecore