380 research outputs found
Cosmological constraints from CMB distortion
We examine bounds on adiabatic and isocurvature density fluctuations from
-type spectral distortions of the cosmic microwave background (CMB).
Studies of such distortion are complementary to CMB measurements of the
spectral index and its running, and will help to constrain these parameters on
significantly smaller scales. We show that a detection on the order of would strongly be at odds with the standard cosmological model of
a nearly scale-invariant spectrum of adiabatic perturbations. Further, we find
that given the current CMB constraints on the isocurvature mode amplitude, a
nearly scale-invariant isocurvature mode (common in many curvaton models)
cannot produce significant -distortion. Finally, we show that future
experiments will strongly constrain the amplitude of the isocurvature modes
with a highly blue spectrum as predicted by certain axion models.Comment: 6 pages, 4 figures, version 3 contains a new figure showing the
contribution to \mu_k as a function of k, and a clarification regarding the
acoustic wave energy, accompanied by a related acknowledgement and referenc
Neutrinos and Future Concordance Cosmologies
We review the free parameters in the concordance cosmology, and those which
might be added to this set as the quality of astrophysical data improves. Most
concordance parameters encode information about otherwise unexplored aspects of
high energy physics, up to the GUT scale via the "inflationary sector," and
possibly even the Planck scale in the case of dark energy. We explain how
neutrino properties may be constrained by future astrophysical measurements.
Conversely, future neutrino physics experiments which directly measure these
parameters will remove uncertainty from fits to astrophysical data, and improve
our ability to determine the global properties of our universe.Comment: Proceedings of paper given at Neutrino 2008 meeting (by RE
Constraining the Inflationary Equation of State
We explore possible constraints on the inflationary equation state: p=w\rho.
While w must be close to -1 for those modes that contribute to the observed
power spectrum, for those modes currently out of experimental reach, the
constraints on w are much weaker, with only w<-1/3 as an a priori requirement.
We find, however, that limits on the reheat temperature and the inflationary
energy scale constrain w further, though there is still ample parameter space
for a vastly different (accelerating) equation of state between the end of
quasi-de Sitter inflation and the beginning of the radiation-dominated era. In
the event that such an epoch of acceleration could be observed, we review the
consequences for the primordial power spectrum.Comment: 12 pages, 2 figur
Inflation and the Scale Dependent Spectral Index: Prospects and Strategies
We consider the running of the spectral index as a probe of both inflation
itself, and of the overall evolution of the very early universe. Surveying a
collection of simple single field inflationary models, we confirm that the
magnitude of the running is relatively consistent, unlike the tensor amplitude,
which varies by orders of magnitude. Given this target, we confirm that the
running is potentially detectable by future large scale structure or 21 cm
observations, but that only the most futuristic measurements can distinguish
between these models on the basis of their running. For any specified
inflationary scenario, the combination of the running index and unknown
post-inflationary expansion history induces a theoretical uncertainty in the
predicted value of the spectral index. This effect can easily dominate the
statistical uncertainty with which Planck and its successors are expected to
measure the spectral index. More positively, upcoming cosmological experiments
thus provide an intriguing probe of physics between TeV and GUT scales by
constraining the reheating history associated with any specified inflationary
model, opening a window into the "primordial dark age" that follows the end of
inflation.Comment: 32 pages. v2 and v3 Minor reference updates /clarification
Constraining holographic inflation with WMAP
In a class of recently proposed models, the early universe is strongly
coupled and described holographically by a three-dimensional, weakly coupled,
super-renormalizable quantum field theory. This scenario leads to a power
spectrum of scalar perturbations that differs from the usual empirical LCDM
form and the predictions of generic models of single field, slow roll
inflation. This spectrum is characterized by two parameters: an amplitude, and
a parameter g related to the coupling constant of the dual theory. We estimate
these parameters, using WMAP and other astrophysical data. We compute Bayesian
evidence for both the holographic model and standard LCDM and find that their
difference is not significant, although LCDM provides a somewhat better fit to
the data. However, it appears that Planck will permit a definitive test of this
holographic scenario.Comment: 24 pages, 9 figs, published versio
Reionization and the large-scale 21 cm-cosmic microwave background cross correlation
Of the many probes of reionization, the 21 cm line and the cosmic microwave
background (CMB) are among the most effective. We examine how the
cross-correlation of the 21 cm brightness and the CMB Doppler fluctuations on
large angular scales can be used to study this epoch. We employ a new model of
the growth of large scale fluctuations of the ionized fraction as reionization
proceeds. We take into account the peculiar velocity field of baryons and show
that its effect on the cross correlation can be interpreted as a mixing of
Fourier modes. We find that the cross-correlation signal is strongly peaked
toward the end of reionization and that the sign of the correlation should be
positive because of the inhomogeneity inherent to reionization. The signal
peaks at degree scales (l~100) and comes almost entirely from large physical
scales (k~0.01 Mpc). Since many of the foregrounds and noise that plague low
frequency radio observations will not correlate with CMB measurements, the
cross correlation might appear to provide a robust diagnostic of the
cosmological origin of the 21 cm radiation around the epoch of reionization.
Unfortunately, we show that these signals are actually only weakly correlated
and that cosmic variance dominates the error budget of any attempted detection.
We conclude that the detection of a cross-correlation peak at degree-size
angular scales is unlikely even with ideal experiments.Comment: 15 pages, 4 figures, submitted to MNRA
Higher Order Corrections to the Primordial Gravitational Wave Spectrum and its Impact on Parameter Estimates for Inflation
We study the impact of the use of the power series expression for the
primordial tensor spectrum on parameter estimation from future direct detection
gravitational wave experiments. The spectrum approximated by the power series
expansion may give large deviation from the true (fiducial) value when it is
normalized at CMB scale because of the large separation between CMB and direct
detection scales. We derive the coefficients of the higher order terms of the
expansion up to the sixth order within the framework of the slow-roll
approximation and investigate how well the inclusion of higher order terms
improves the analytic prediction of the spectrum amplitude by comparing with
numerical results. Using the power series expression, we consider future
constraints on inflationary parameters expected from direct detection
experiments of the inflationary gravitational wave background and show that the
truncation of the higher order terms can lead to incorrect evaluation of the
parameters. We present two example models; a quadratic chaotic inflation model
and mixed inflaton and curvaton model with a quartic inflaton potential.Comment: 25 pages, 7 figures, revised version accepted by JCA
Running Spectral Index and Formation of Primordial Black Hole in Single Field Inflation Models
A broad range of single field models of inflation are analyzed in light of
all relevant recent cosmological data, checking whether they can lead to the
formation of long-lived Primordial Black Holes (PBHs). To that end we calculate
the spectral index of the power spectrum of primordial perturbations as well as
its first and second derivatives. PBH formation is possible only if the
spectral index increases significantly at small scales, i.e. large wave number
. Since current data indicate that the first derivative of the
spectral index is negative at the pivot scale , PBH formation
is only possible in the presence of a sizable and positive second derivative
("running of the running") . Among the three small-field and five
large-field models we analyze, only one small-field model, the "running mass"
model, allows PBH formation, for a narrow range of parameters. We also note
that none of the models we analyze can accord for a large and negative value of
, which is weakly preferred by current data.Comment: 26 pages, 5 figures, Refs. added, Minor textual change; version to
appear in JCA
- …
