630 research outputs found

    Catalogue of protozoan parasites recorded in Australia

    Get PDF

    Metal chaperones prevent zinc-mediated cognitive decline

    Full text link
    © 2014 Elsevier Inc. Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6 weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease

    The roles of sex, mass and individual specialisation in partitioning foraging-depth niches of a pursuit-diving predator

    Get PDF
    Intra-specific foraging niche partitioning can arise due to gender differences or individual specialisation in behaviour or prey selection. These may in turn be related to sexual size dimorphism or individual variation in body size through allometry. These variables are often inter-related and challenging to separate statistically. We present a case study in which the effects of sex, body mass and individual specialisation on the dive depths of the South Georgia shag on Bird Island, South Georgia are investigated simultaneously using a linear mixed model. The nested random effects of trip within individual explained a highly significant amount of the variance. The effects of sex and body mass were both significant independently but could not be separated statistically owing to them being strongly interrelated. Variance components analysis revealed that 45.5% of the variation occurred among individuals, 22.6% among trips and 31.8% among Dives, while R2 approximations showed gender explained 31.4% and body mass 55.9% of the variation among individuals. Male dive depths were more variable than those of females at the levels of individual, trip and dive. The effect of body mass on individual dive depths was only marginally significant within sexes. The percentage of individual variation in dive depths explained by mass was trivial in males (0.8%) but substantial in females (24.1%), suggesting that differences in dive depths among males was largely due to them adopting different behavioural strategies whereas in females allometry played an additional role. Niche partitioning in the study population therefore appears to be achieved through the interactive effects of individual specialisation and gender upon vertical foraging patch selection, and has the potential to interact in complex ways with other axes of the niche hypervolume such as foraging locations, timing of foraging and diet

    Pathology of Haematozoan parasites in birds from southeast Queensland

    Get PDF

    Phylogenetic studies on Macropodinium (Ciliophora: Litostomatea)

    Get PDF

    Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain

    Full text link
    Three dimensional maps of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and phosphorous (P) in a 6-hydroxydopamine (6-OHDA) lesioned mouse brain were constructed employing a novel quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method known as elemental bio-imaging. The 3D maps were produced by ablating serial consecutive sections taken from the same animal. Each section was quantified against tissue standards resulting in a three dimensional map that represents the variation of trace element concentrations of the mouse brain in the area surrounding the substantia nigra (SN). Damage caused by the needle or the toxin did not alter the distribution of Zn, and Cu but significantly altered Fe in and around the SN and both Mn and Fe around the needle track. A 20% increase in nigral Fe concentration was observed within the lesioned hemisphere. This technique clearly shows the natural heterogeneous distributions of these elements throughout the brain and the perturbations that occur following trauma or intoxication. The method may applied to three-dimensional modelling of trace elements in a wide range of tissue samples. © 2010 The Royal Society of Chemistry
    • …
    corecore