63 research outputs found
Modeling of radiative - conductive heat transfer in compositing materials
A layer of composite material is investigated, which is heated one-sidedly with one-dimensional energy transfer accounting for thermal conductivity and radiation. A mathematical model is suggested for non-stationary coefficient thermophysical problem under radiative-conductive heat transfer in a material layer. Temperature dependencies of thermal capacity and thermal conductivity coefficient of composite radio-transparent material have been determined through numerical modeling by solving the coefficient reverse problem of thermal conductivity
Influence of metallic additives on manganese ferrites sintering
Influence of cuprum nanopowder additive received by electric explosion on the process of manganese ferrites MgFe2O4 consolidating at thermal sintering was researched by dilatometry method. Cuprum nanopowder at a rate of 5 mass % was added into the original commercial-grade powder of manganese ferrite MgFe2O4. Powder mixture was numerously blended with screening for better blending before pressing. Powder compacts were formed by cold one-axle static pressing. It was proved that introduction of cuprum additive caused shrinkage increase at final heating stage. There was abnormal compact enlarging at sintering in the air at isothermal stage; the specified process was not observed in vacuum. This difference can be explained by changes in conditions of gaseous discharge from volume of pores
On Properties of Boundaries and Electron Conductivity in Mesoscopic Polycrystalline Silicon Films for Memory Devices
We present the results of molecular dynamics modeling on the structural
properties of grain boundaries (GB) in thin polycrystalline films. The
transition from crystalline boundaries with low mismatch angle to amorphous
boundaries is investigated. It is shown that the structures of the GBs satisfy
a thermodynamical criterion. The potential energy of silicon atoms is closely
related with a geometrical quantity -- tetragonality of their coordination with
their nearest neighbors. A crossover of the length of localization is observed.
To analyze the crossover of the length of localization of the single-electron
states and properties of conductance of the thin polycrystalline film at low
temperature, we use a two-dimensional Anderson localization model, with the
random one-site electron charging energy for a single grain (dot), random
non-diagonal matrix elements, and random number of connections between the
neighboring grains. The results on the crossover behavior of localization
length of the single-electron states and characteristic properties of
conductance are presented in the region of parameters where the transition from
an insulator to a conductor regimes takes place.Comment: 8 pages, 3 figure
Modeling of radiative - conductive heat transfer in compositing materials
A layer of composite material is investigated, which is heated one-sidedly with one-dimensional energy transfer accounting for thermal conductivity and radiation. A mathematical model is suggested for non-stationary coefficient thermophysical problem under radiative-conductive heat transfer in a material layer. Temperature dependencies of thermal capacity and thermal conductivity coefficient of composite radio-transparent material have been determined through numerical modeling by solving the coefficient reverse problem of thermal conductivity
Dynamics of combined electron beam and laser dispersion of polymers in vacuum
The mechanisms of the impact of the laser assisting effect on the dispersion kinetics and on the structure of the deposited layers in electron beam dispersion of a polymer target were analyzed. The proposed model and analytical expressions adequately describe the kinetic dependence of the polymer materials dispersion rate in a vacuum on the intensity of laser processing of their dispersion zone
Properties of cage rearrangements observed near the colloidal glass transition
We use confocal microscopy to study the motions of particles in concentrated
colloidal systems. Near the glass transition, diffusive motion is inhibited, as
particles spend time trapped in transient ``cages'' formed by neighboring
particles. We measure the cage sizes and lifetimes, which respectively shrink
and grow as the glass transition approaches. Cage rearrangements are more
prevalent in regions with lower local concentrations and higher disorder.
Neighboring rearranging particles typically move in parallel directions,
although a nontrivial fraction move in anti-parallel directions, usually from
pairs of particles with initial separations corresponding to the local maxima
and minima of the pair correlation function , respectively.Comment: 5 pages, 4 figures; text & figures revised in v
Thermal shock removal of defective glass-enamel coating from cast-iron products
A setup for light beam exposure has been developed. The setup was used to consider the technology of thermal shock destruction of the coating by pulsed-periodic exposure to powerful focused light from the xenon arc lamp DKsShRB-10000. It is shown that this type of exposure can effectively remove the glass-enamel coating from iron products. The optimal mode of setup operation to efficiently remove the defective glass-enamel coating is found: the diameter of the focused light beams is 2.5-3.5 cm; the lamp arc pulse current is 350-450 A; pulse duration is (0.5-1) s and pulse repetition frequency is (0.15-0.5) s-1
Frictionless bead packs have macroscopic friction, but no dilatancy
The statement of the title is shown by numerical simulation of homogeneously
sheared packings of frictionless, nearly rigid beads in the quasistatic limit.
Results coincide for steady flows at constant shear rate γ in the
limit of small γ and static approaches, in which packings are equilibrated
under growing deviator stresses. The internal friction angle ϕ, equal to
5.76 0.22 degrees in simple shear, is independent on the average pressure
P in the rigid limit. It is shown to stem from the ability of stable
frictionless contact networks to form stress-induced anisotropic fabrics. No
enduring strain localization is observed. Dissipation at the macroscopic level
results from repeated network rearrangements, like the effective friction
of a frictionless slider on a bumpy surface. Solid fraction Φ remains
equal to the random close packing value ≃ 0.64 in slowly or statically
sheared systems. Fluctuations of stresses and volume are observed to regress in
the large system limit, and we conclude that the same friction law for simple
shear applies in the large psystem limit if normal stress or density is
externally controlled. Defining the inertia number as I = γ m/(aP),
with m the grain mass and a its diameter, both internal friction
coefficient ∗ = tan ϕ and volume 1/Φ increase as
powers of I in the quasistatic limit of vanishing I, in which all mechanical
properties are determined by contact network geometry. The microstructure of
the sheared material is characterized with a suitable parametrization of the
fabric tensor and measurements of connectivity and coordination numbers
associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v
- β¦