50,564 research outputs found
Assessment of the worthwhileness of efficient driving in railway systems with high-receptivity power supplies
Eco-driving is one of the most important strategies for significantly reducing the energy consumption of railways with low investments. It consists of designing a way of driving a train to fulfil a target running time, consuming the minimum amount of energy. Most eco-driving energy savings come from the substitution of some braking periods with coasting periods. Nowadays, modern trains can use regenerative braking to recover the kinetic energy during deceleration phases. Therefore, if the receptivity of the railway system to regenerate energy is high, a question arises: is it worth designing eco-driving speed profiles? This paper assesses the energy benefits that eco-driving can provide in different scenarios to answer this question. Eco-driving is obtained by means of a multi-objective particle swarm optimization algorithm, combined with a detailed train simulator, to obtain realistic results. Eco-driving speed profiles are compared with a standard driving that performs the same running time. Real data from Spanish high-speed lines have been used to analyze the results in two case studies. Stretches fed by 1 Ă— 25 kV and 2 Ă— 25 kV AC power supply systems have been considered, as they present high receptivity to regenerate energy. Furthermore, the variations of the two most important factors that affect the regenerative energy usage have been studied: train motors efficiency ratio and catenary resistance. Results indicate that the greater the catenary resistance, the more advantageous eco-driving is. Similarly, the lower the motor efficiency, the greater the energy savings provided by efficient driving. Despite the differences observed in energy savings, the main conclusion is that eco-driving always provides significant energy savings, even in the case of the most receptive power supply network. Therefore, this paper has demonstrated that efforts in improving regenerated energy usage must not neglect the role of eco-driving in railway efficiency
Saber: window-based hybrid stream processing for heterogeneous architectures
Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes
Optimized Monte Carlo Method for glasses
A new Monte Carlo algorithm is introduced for the simulation of supercooled
liquids and glass formers, and tested in two model glasses. The algorithm is
shown to thermalize well below the Mode Coupling temperature and to outperform
other optimized Monte Carlo methods. Using the algorithm, we obtain finite size
effects in the specific heat. This effect points to the existence of a large
correlation length measurable in equal time correlation functions.Comment: Proceedings of "X International workshop on Disordered Systems" held
in Molveno (Italy), March 200
Finite size effects in the specific heat of glass-formers
We report clear finite size effects in the specific heat and in the
relaxation times of a model glass former at temperatures considerably smaller
than the Mode Coupling transition. A crucial ingredient to reach this result is
a new Monte Carlo algorithm which allows us to reduce the relaxation time by
two order of magnitudes. These effects signal the existence of a large
correlation length in static quantities.Comment: Proceeding of "3rd International Workshop on Complex Systems". Sendai
(Japan). To appear on AIP Conference serie
On the critical behavior of the specific heat in glass-formers
We show numeric evidence that, at low enough temperatures, the potential
energy density of a glass-forming liquid fluctuates over length scales much
larger than the interaction range. We focus on the behavior of translationally
invariant quantities. The growing correlation length is unveiled by studying
the Finite Size effects. In the thermodynamic limit, the specific heat and the
relaxation time diverge as a power law. Both features point towards the
existence of a critical point in the metastable supercooled liquid phase.Comment: Version to be published in Phys. Rev.
Measuring the Radiative Histories of QSOs with the Transverse Proximity Effect
Since the photons that stream from QSOs alter the ionization state of the gas
they traverse, any changes to a QSO's luminosity will produce
outward-propagating ionization gradients in the surrounding intergalactic gas.
This paper shows that at redshift z~3 the gradients will alter the gas's
Lyman-alpha absorption opacity enough to produce a detectable signature in the
spectra of faint background galaxies. By obtaining noisy (S:N~4) low-resolution
(~7A) spectra of a several dozen background galaxies in an R~20' field
surrounding an isotropically radiating 18th magnitude QSO at z=3, it should be
possible to detect any order-of-magnitude changes to the QSO's luminosity over
the previous 50--100 Myr and to measure the time t_Q since the onset of the
QSO's current luminous outburst with an accuracy of ~5 Myr for t_Q<~50 Myr.
Smaller fields-of-view are acceptable for shorter QSO lifetimes. The major
uncertainty, aside from cosmic variance, will be the shape and orientation of
the QSO's ionization cone. This can be determined from the data if the number
of background sources is increased by a factor of a few. The method will then
provide a direct test of unification models for AGN.Comment: Accepted for publication in the ApJ. 16 page
- …