6,373 research outputs found
Convergence Conditions for Random Quantum Circuits
Efficient methods for generating pseudo-randomly distributed unitary
operators are needed for the practical application of Haar distributed random
operators in quantum communication and noise estimation protocols. We develop a
theoretical framework for analyzing pseudo-random ensembles generated through a
random circuit composition. We prove that the measure over random circuits
converges exponentially (with increasing circuit length) to the uniform (Haar)
measure on the unitary group and describe how the rate of convergence may be
calculated for specific applications.Comment: 4 pages (revtex), comments welcome. v2: reference added, title
changed; v3: published version, minor changes, references update
Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)
In this work we extend the Emerson and Kahlon's cutoff theorems for process
skeletons with conjunctive guards to Parameterized Networks of Timed Automata,
i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata
instantiated from a finite set of Timed Automata templates.
In this way we aim at giving a tool to universally verify software systems
where an unknown number of software components (i.e. processes) interact with
continuous time temporal constraints. It is often the case, indeed, that
distributed algorithms show an heterogeneous nature, combining dynamic aspects
with real-time aspects. In the paper we will also show how to model check a
protocol that uses special variables storing identifiers of the participating
processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is
non-trivial, since solutions to the parameterized verification problem often
relies on the processes to be symmetric, i.e. indistinguishable. On the other
side, many popular distributed algorithms make use of PIDs and thus cannot
directly apply those solutions
NGC1333/IRAS4: A multiple star formation laboratory
We present SCUBA observations of the protomultiple system NGC1333/IRAS4 at
450um and 850um. The 850um map shows significant extended emission which is
most probably a remnant of the initial cloud core. At 450um, the component 4A
is seen to have an elongated shape suggestive of a disk. Also we confirm that
in addition to the 4A and 4B system, there exists another component 4C, which
appears to lie out of the plane of the system and of the extended emission.
Deconvolution of the beam reveals a binary companion to IRAS4B. Simple
considerations of binary dynamics suggest that this triple 4A-4BI-4BII system
is unstable and will probably not survive in its current form. Thus IRAS4
provides evidence that systems can evolve from higher to lower multiplicity as
they move towards the main sequence. We construct a map of spectral index from
the two wavelengths, and comment on the implications of this for dust evolution
and temperature differences across the map. There is evidence that in the
region of component 4A the dust has evolved, probably by coagulating into
larger or more complex grains. Furthermore, there is evidence from the spectral
index maps that dust from this object is being entrained in its associated
outflow.Comment: 10 pages, 10 figures. To appear in MNRAS. Uses mn.sty. Also available
at http://www.astro.phys.ethz.ch/papers/smith/smith_p_m.htm
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
One technique to reduce the state-space explosion problem in temporal logic
model checking is symmetry reduction. The combination of symmetry reduction and
symbolic model checking by using BDDs suffered a long time from the
prohibitively large BDD for the orbit relation. Dynamic symmetry reduction
calculates representatives of equivalence classes of states dynamically and
thus avoids the construction of the orbit relation. In this paper, we present a
new efficient model checking algorithm based on dynamic symmetry reduction. Our
experiments show that the algorithm is very fast and allows the verification of
larger systems. We additionally implemented the use of state symmetries for
symbolic symmetry reduction. To our knowledge we are the first who investigated
state symmetries in combination with BDD based symbolic model checking
Organ failure, outcomes and deprivation status among critically ill cirrhosis patients — a one-year cohort study
No abstract available
Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing
Being able to quantify the level of coherent control in a proposed device
implementing a quantum information processor (QIP) is an important task for
both comparing different devices and assessing a device's prospects with
regards to achieving fault-tolerant quantum control. We implement in a
liquid-state nuclear magnetic resonance QIP the randomized benchmarking
protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error
per randomized pulse of with a
single qubit QIP and show an experimentally relevant error model where the
randomized benchmarking gives a signature fidelity decay which is not possible
to interpret as a single error per gate. We explore and experimentally
investigate multi-qubit extensions of this protocol and report an average error
rate for one and two qubit gates of for a three
qubit QIP. We estimate that these error rates are still not decoherence limited
and thus can be improved with modifications to the control hardware and
software.Comment: 10 pages, 6 figures, submitted versio
Recommended from our members
Words are vectors, dependencies are matrices: Learning word embeddings from dependency graphs
Distributional Semantic Models (DSMs) construct vector representations of word meanings based on their contexts. Typically, the contexts of a word are defined as its closest neighbours, but they can also be retrieved from its syntactic dependency relations. In this work, we propose a new dependency-based DSM. The novelty of our model lies in associating an independent meaning representation, a matrix, with each dependency-label. This allows it to capture specifics of the relations between words and contexts, leading to good performance on both intrinsic and extrinsic evaluation tasks. In addition to that, our model has an inherent ability to represent dependency chains as products of matrices which provides a straightforward way of handling further contexts of a word
Characterization of complex quantum dynamics with a scalable NMR information processor
We present experimental results on the measurement of fidelity decay under
contrasting system dynamics using a nuclear magnetic resonance quantum
information processor. The measurements were performed by implementing a
scalable circuit in the model of deterministic quantum computation with only
one quantum bit. The results show measurable differences between regular and
complex behaviour and for complex dynamics are faithful to the expected
theoretical decay rate. Moreover, we illustrate how the experimental method can
be seen as an efficient way for either extracting coarse-grained information
about the dynamics of a large system, or measuring the decoherence rate from
engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that
publishe
- …