22 research outputs found

    Cyclic AMP stimulates apical V-ATPase accumulation, microvillar elongation and proton extrusion in kidney collecting duct A-intercalated cells

    Full text link
    Kidney proton-secreting A-intercalated cells (A-IC) respond to systemic acidosis by accumulating the vacuolar ATPase (V-ATPase) in their apical membrane and by increasing the length and number of apical microvilli. We show here that the cell permeant cAMP analog CPT-cAMP, infused in vivo, results in an almost two-fold increase in apical V-ATPase accumulation in AE1-positive A-IC within 15 min, and that these cells develop an extensive array of apical microvilli compared to controls. In contrast, no significant change in V-ATPase distribution could be detected by immunocytochemistry in B-intercalated cells at the acute time point examined. To show a direct effect of cAMP on A-IC, we prepared cell suspensions from the medulla of transgenic mice expressing EGFP in IC (driven by the B1-subunit promoter of the V-ATPase) and exposed them to cAMP analogs in vitro. 3D-reconstructions of confocal images revealed that cAMP induced a time dependent growth of apical microvilli, starting within minutes after addition. This effect was blocked by the PKA inhibitor, myristoylated PKI. These morphological changes were paralleled by increased cAMP-mediated proton extrusion (pHi recovery) by A-IC in outer medullary collecting ducts measured using the ratiometric probe BCECF. These results, and our prior data showing that the bicarbonate-stimulated soluble adenylyl cyclase (sAC) is highly expressed in kidney intercalated cells, support the idea that cAMP generated either by sAC, or by activation of other signaling pathways, is part of the signal transduction mechanism involved in acid-base sensing and V-ATPase membrane trafficking in kidney intercalated cells

    Altered V-ATPase expression in renal intercalated cells isolated from B1-subunit deficient mice by fluorescence activated cell sorting

    Full text link
    Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1(-/-)) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1(-/-) and wild type mice. However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild type and Atp6v1b1(-/-) mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1(+/+) mice) with Atp6v1b1(-/-) mice to generate novel EGFP-B1(-/-) mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1(+/+) and EGFP-B1(-/-) mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly down-regulated in EGFP-B1(-/-) mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions the B2 up-regulation compensates for the lack of B1, and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are down-regulated
    corecore