4 research outputs found
Magnetic-Field Variations of the Pair-Breaking Effects of Superconductivity in (TMTSF)2ClO4
We have studied the onset temperature of the superconductivity Tc_onset of
the organic superconductor (TMTSF)2ClO4, by precisely controlling the direction
of the magnetic field H. We compare the results of two samples with nearly the
same onset temperature but with different scattering relaxation time tau. We
revealed a complicated interplay of a variety of pair-breaking effects and
mechanisms that overcome these pair-breaking effects. In low fields, the linear
temperature dependences of the onset curves in the H-T phase diagrams are
governed by the orbital pair-breaking effect. The dips in the in-plane
field-angle phi dependence of Tc_onset, which were only observed in the
long-tau sample, provides definitive evidence that the field-induced
dimensional crossover enhances the superconductivity if the field direction is
more than about 19-degrees away from the a axis. In the high-field regime for
H//a, the upturn of the onset curve for the long-tau sample indicates a new
superconducting state that overcomes the Pauli pair-breaking effect but is
easily suppressed by impurity scatterings. The Pauli effect is also overcome
for H//b' by a realization of another state for which the maximum of
Tc_onset(phi) occurs in a direction different from the crystalline axes. The
effect on Tc_onset of tilting the applied field out of the conductive plane
suggests that the Pauli effect plays a significant role in determining
Tc_onset. The most plausible explanation of these results is that (TMTSF)2ClO4
is a singlet superconductor and exhibits Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) states in high fields.Comment: 12 pages, 10 figures. To be published in J. Phys. Soc. Jpn. (vol.77,
2008
Linear-T scattering and pairing from antiferromagnetic fluctuations in the (TMTSF)_2X organic superconductors
An exhaustive investigation of metallic electronic transport and
superconductivity of organic superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4
in the Pressure-Temperature phase diagram between T=0 and 20 K and a
theoretical description based on the weak coupling renormalization group method
are reported. The analysis of the data reveals a high temperature domain
(T\approx 20 K) in which a regular T^2 electron-electron Umklapp scattering
obeys a Kadowaki-Woods law and a low temperature regime (T< 8 K) where the
resistivity is dominated by a linear-in temperature component. In both
compounds a correlated behavior exists between the linear transport and the
extra nuclear spin-lattice relaxation due to antiferromagnetic fluctuations. In
addition, a tight connection is clearly established between linear transport
and T_c. We propose a theoretical description of the anomalous resistivity
based on a weak coupling renormalization group determination of
electron-electron scattering rate. A linear resistivity is found and its origin
lies in antiferromagnetic correlations sustained by Cooper pairing via
constructive interference. The decay of the linear resistivity term under
pressure is correlated with the strength of antiferromagnetic spin correlations
and T_c, along with an unusual build-up of the Fermi liquid scattering. The
results capture the key features of the low temperature electrical transport in
the Bechgaard salts
Temperature and pressure dependencies of the crystal structure of the organic superconductor (TMTSF)
The crystal structure of (TMTSF)2ClO4 has been determined at (7 K, 1 bar) and at (7 K, 5 kbar) with a high accuracy. For the latter, low temperature and pressure were applied
simultaneously using a X-ray diffraction instrumentation designed in our laboratory, these results
are the first for molecular compounds. The effects of lowering the temperature are not the same
as those produced by increasing the pressure. At (7 K, 1 bar) the anion ordering which occurs in
this compound, and which is characterised by the appearance of superlattice reflections, is
well observed. This anion ordering leads to the presence of two independent stacks of TMTSF
cations which is the only case found in the Bechgaard salts family. The comparison of the low
temperature crystal structures under atmospheric pressure and at 5 kbar shows that the centres of
mass are nearly the same, independent of the pressure: the interchain interactions do not depend
on the doubling of the unit cell. Under pressure, the ordering (0, 1/2, 0) does not occur at any
temperature. These structural data are confirmed by the quantum chemical calculations which
show that the difference in the site energy of the two independent cations is 100 meV